11 |
Structural Damage Detection by Comparison of Experimental and Theoretical Mode ShapesRosenblatt, William George 01 March 2016 (has links) (PDF)
Existing methods of evaluating the structural system of a building after a seismic event consist of removing architectural elements such as drywall, cladding, insulation, and fireproofing. This method is destructive and costly in terms of downtime and repairs. This research focuses on removing the guesswork by using forced vibration testing (FVT) to experimentally determine the health of a building. The experimental structure is a one-story, steel, bridge-like structure with removable braces. An engaged brace represents a nominal and undamaged condition; a dis-engaged brace represents a brace that has ruptured thus changing the stiffness of the building. By testing a variety of brace configurations, a set of experimental data is collected that represents potential damage to the building after an earthquake. Additionally, several unknown parameters of the building’s substructure, lateral-force-resisting-system, and roof diaphragm are determined through FVT.
A suite of computer models with different levels of damage are then developed. A quantitative analysis procedure compares experimental results to the computer models. Models that show high levels of correlation to experimental brace configurations identify the extent of damage in the experimental structure. No testing or instrumentation of the building is necessary before an earthquake to identify if, and where, damage has occurred.
|
12 |
H-matrix based Solver for 3D Elastodynamics Boundary Integral Equations / Solveurs fondés sur la méthode des H-matrices pour les équations intégrales en élastodynamique 3DDesiderio, Luca 27 January 2017 (has links)
Cette thèse porte sur l'étude théorique et numérique des méthodes rapides pour résoudre les équations de l'élastodynamique 3D en domaine fréquentiel, et se place dans le cadre d'une collaboration avec la société Shell en vue d'optimiser la convergence des problèmes d'inversion sismique. La méthode repose sur l'utilisation des éléments finis de frontière (BEM) pour la discrétisation et sur les techniques de matrices hiérarchiques (H-matrices) pour l'accélération de la résolution du système linéaire. Dans le cadre de cette thèse on a développé un solveur direct pour les BEMs en utilisant une factorisation LU et un stockage hiérarchique. Si le concept des H-matrices est simple à comprendre, sa mise en oeuvre requiert des développements algorithmiques importants tels que la gestion de la multiplication de matrices représentées par des structures différentes (compressées ou non) qui ne comprend pas mois de 27 sous-cas. Un autre point délicat est l'utilisation des méthodes d'approximations par matrices compressées (de rang faible) dans le cadre des problèmes vectoriels. Une étude algorithmique a donc été faite pour mettre en oeuvre la méthode des H-matrices. Nous avons par ailleurs estimé théoriquement le rang faible attendu pour les noyaux oscillants, ce qui constitue une nouveauté, et montré que la méthode est utilisable en élastodynamique. En outre on a étudié l'influence des divers paramètres de la méthode en acoustique et en élastodynamique 3D, à fin de calibrer leur valeurs numériques optimales. Dans le cadre de la collaboration avec Shell, un cas test spécifique a été étudié. Il s'agit d'un problème de propagation d'une onde sismique dans un demi-espace élastique soumis à une force ponctuelle en surface. Enfin le solveur direct développé a été intégré au code COFFEE développé a POEMS (environ 25000 lignes en Fortran 90) / This thesis focuses on the theoretical and numerical study of fast methods to solve the equations of 3D elastodynamics in frequency-domain. We use the Boundary Element Method (BEM) as discretization technique, in association with the hierarchical matrices (H-matrices) technique for the fast solution of the resulting linear system. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundaries. Thus, this method is well suited to treat seismic wave propagation problems. A major drawback of classical BEM is that it results in dense matrices, which leads to high memory requirement (O (N 2 ), if N is the number of degrees of freedom) and computational costs.Therefore, the simulation of realistic problems is limited by the number of degrees of freedom. Several fast BEMs have been developed to improve the computational efficiency. We propose a fast H-matrix based direct BEM solver.
|
13 |
Influência do comportamento semi-rígido de placas de base e de ligações viga-coluna na resposta dinâmica de pórticos de aço. / Influence of the semi-rigid behaviour of column base plates and beam-to-column joints on the dynamic response of steel frames.Fernanda da Rocha de Carvalho Lopes 18 March 2008 (has links)
Tradicionalmente, na análise e dimensionamento de estruturas de aço, assume-se que as ligações viga-coluna são rígidas ou flexíveis (rotuladas). Por outro lado, é de conhecimento geral que a grande maioria das ligações viga-coluna apresenta um comportamento intermediário, ou seja, semi-rígido. Inúmeros trabalhos de pesquisa têm sido desenvolvidos nos últimos vinte e cinco anos, de forma a estudar o comportamento desse tipo de ligação. Um dos principais objetivos desta investigação é o de propor uma metodologia de análise que represente de forma apropriada a influência do comportamento semi-rígido de placas de base e de ligações viga-coluna, sobre a resposta dinâmica (linear e não-linear) de estruturas de aço. Outra contribuição desta dissertação diz respeito à investigação do comportamento dinâmico (linear e não-linear) de pórticos de aço, a partir da consideração de ligações viga-coluna simétricas e não-simétricas e especialmente das placas de base. A análise estrutural é desenvolvida com base no emprego do programa de elementos finitos ANSYS [27]. Nos modelos em elementos finitos foram considerados os efeitos de não-linearidade geométrica (efeitos de segunda ordem), o comportamento não-linear das placas de base e das ligações viga-coluna e, bem como, o efeito de histerese que ocorre quando a estrutura é submetida a cargas cíclicas. Os resultados alcançados indicaram que o fenômeno físico da ressonância não ocorre no que se refere à resposta dinâmica dos modelos semi-rígidos não-lineares. A ressonância não ocorre na resposta dos modelos devido ao fato de que, na análise dinâmica não-linear, o efeito de histerese presente nas ligações (placas de base e viga-coluna), essencialmente com comportamento não-linear, provoca um amortecimento na resposta dinâmica da estrutura. / Traditionally, the steel portal frame design assumes that beam-to-column connections are rigid or pinned. Despite these facts, it is largely recognized that the great majority of joints does not exhibit such idealized behaviour. These connections are called semi-rigid, and their design should be performed according to their actual structural behaviour. Extensive research has been performed over the past twenty-five years to estimate the actual behaviour of such joints. One of the main objectives of this work is to propose an analysis methodology to properly represent the influence of the semi-rigid behaviour of base plates and beam-to-column joints on the dynamical response of steel structures (linear and non-linear). Another important investigated issue concerned the assessment of the steel frames dynamical behaviour (linear and non-linear) due to the presence of symmetrical and non-symmetrical beam-to-column semi-rigid joints and, especially, the column base plates. The structural analysis was made with the aid of the ANSYS [27] finite element program. The finite element model included geometric non-linearity, column base plates and beam-to-column non-linear behaviour and considered the influence of non-linear and hysteretic moment versus rotation curve of the joints. The results indicated that the resonance physical phenomenon was not reached in the nonlinear semi-rigid frames dynamic response. The resonance did not occurred in these systems due to the hysteretic damping induced by the energy dissipation of the non-linear hysteretic loops at the non-linear joints.
|
14 |
Influência do comportamento semi-rígido de placas de base e de ligações viga-coluna na resposta dinâmica de pórticos de aço. / Influence of the semi-rigid behaviour of column base plates and beam-to-column joints on the dynamic response of steel frames.Fernanda da Rocha de Carvalho Lopes 18 March 2008 (has links)
Tradicionalmente, na análise e dimensionamento de estruturas de aço, assume-se que as ligações viga-coluna são rígidas ou flexíveis (rotuladas). Por outro lado, é de conhecimento geral que a grande maioria das ligações viga-coluna apresenta um comportamento intermediário, ou seja, semi-rígido. Inúmeros trabalhos de pesquisa têm sido desenvolvidos nos últimos vinte e cinco anos, de forma a estudar o comportamento desse tipo de ligação. Um dos principais objetivos desta investigação é o de propor uma metodologia de análise que represente de forma apropriada a influência do comportamento semi-rígido de placas de base e de ligações viga-coluna, sobre a resposta dinâmica (linear e não-linear) de estruturas de aço. Outra contribuição desta dissertação diz respeito à investigação do comportamento dinâmico (linear e não-linear) de pórticos de aço, a partir da consideração de ligações viga-coluna simétricas e não-simétricas e especialmente das placas de base. A análise estrutural é desenvolvida com base no emprego do programa de elementos finitos ANSYS [27]. Nos modelos em elementos finitos foram considerados os efeitos de não-linearidade geométrica (efeitos de segunda ordem), o comportamento não-linear das placas de base e das ligações viga-coluna e, bem como, o efeito de histerese que ocorre quando a estrutura é submetida a cargas cíclicas. Os resultados alcançados indicaram que o fenômeno físico da ressonância não ocorre no que se refere à resposta dinâmica dos modelos semi-rígidos não-lineares. A ressonância não ocorre na resposta dos modelos devido ao fato de que, na análise dinâmica não-linear, o efeito de histerese presente nas ligações (placas de base e viga-coluna), essencialmente com comportamento não-linear, provoca um amortecimento na resposta dinâmica da estrutura. / Traditionally, the steel portal frame design assumes that beam-to-column connections are rigid or pinned. Despite these facts, it is largely recognized that the great majority of joints does not exhibit such idealized behaviour. These connections are called semi-rigid, and their design should be performed according to their actual structural behaviour. Extensive research has been performed over the past twenty-five years to estimate the actual behaviour of such joints. One of the main objectives of this work is to propose an analysis methodology to properly represent the influence of the semi-rigid behaviour of base plates and beam-to-column joints on the dynamical response of steel structures (linear and non-linear). Another important investigated issue concerned the assessment of the steel frames dynamical behaviour (linear and non-linear) due to the presence of symmetrical and non-symmetrical beam-to-column semi-rigid joints and, especially, the column base plates. The structural analysis was made with the aid of the ANSYS [27] finite element program. The finite element model included geometric non-linearity, column base plates and beam-to-column non-linear behaviour and considered the influence of non-linear and hysteretic moment versus rotation curve of the joints. The results indicated that the resonance physical phenomenon was not reached in the nonlinear semi-rigid frames dynamic response. The resonance did not occurred in these systems due to the hysteretic damping induced by the energy dissipation of the non-linear hysteretic loops at the non-linear joints.
|
15 |
Wind-induced vibrations in tall timber buildings : Design standards, experimental and numerical modal analysesLandel, Pierre January 2022 (has links)
Climate change and densification of cities are two major global challenges. Inthe building and construction industry, there are great expectations that tall timberbuildings will constitute one of the most sustainable solutions. First, verticalurban growth is energy and resource-efficient. Second, forest-based productsstore carbon and have one of the highest mechanical strength to density ratios.If the structural substitution of concrete and steel with wood in high-rise buildingsawakens fears of fire safety issues, engineers and researchers are particularlyworried about the dynamic response of the trendy tall timber buildings.Indeed, due to the low density of wood, they are lighter, and for the same height,they might be more sensitive to wind-induced vibrations than traditional buildings.To satisfy people’s comfort on the top floors, the serviceability design oftall timber buildings must consider wind-induced vibrations carefully. Architectsand structural engineers need accurate and verified calculation methods,useful numerical models and good knowledge of the dynamical properties oftall timber buildings. Firstly, the research work presented hereby attempts to increase the understandingof the dynamical phenomena of wind-induced vibration in tall buildings andevaluate the accuracy of the semi-empirical models available to estimate alongwindaccelerations in buildings. Secondly, it aims at, experimentally and numerically,studying the impact of structural parameters – masses, stiffnesses anddamping – on the dynamics of timber structures. Finally, it suggests how talltimber buildings can be modeled to correctly predict modal properties and windinducedresponses. This research thesis confirms the concerns that timber buildings above 15-20stories are more sensitive to wind excitation than traditional buildings with concreteand steel structures, and solutions are proposed to mitigate this vibrationissue. Regarding the comparison of models from different standards to estimatewind-induced accelerations, the spread of the results is found to be very large.From vibration tests on a large glulam truss, the connection stiffnesses are foundto be valuable for predicting modal properties, and numerical reductions withsimple spring models yield fair results. Concerning the structural models of conceptualand real tall timber buildings, numerical case studies emphasize the importanceof accurately distributed masses and stiffnesses of structural elements,connections and non-structural building parts, and the need for accurate dampingvalues. / Klimatförändringar och förtätning av städer är två stora globala utmaningar. Inom bygg- och anläggningsbranschen finns det stora förväntningar på att höga trähus ska utgöra en av de mest hållbara lösningarna. Dels är vertikal förtätning i städer energi- och resurseffektiv, dels lagrar skogsbaserade produkter kol och har dessutom ett av de högsta förhållanden mellan mekanisk styrka och densitet. Om den strukturella ersättningen av stål och betong med trä i höghus väcker farhågor ur brandsäkerhetssynpunkt, är ingenjörer och forskare särskilt oroliga för den dynamiska responsen i de trendiga högre trähusen. På grund av träets låga densitet blir de lättare, och för samma höjd kan de vara känsligare för vindinducerade vibrationer än traditionella byggnader. För att tillfredsställa människors komfort på de översta våningarna måste projektören av höga trähus noga överväga vindinducerade vibrationer i bruksgränstillstånd. Arkitekter och byggnadsingenjörer behöver noggranna och verifierade beräkningsmetoder, användbara numeriska modeller och goda kunskaper om höga träbyggnaders dynamiska egenskaper. För det första avser detta forskningsarbete att öka förståelsen för den dynamiska effekten av vindinducerade vibrationer i höga byggnader och utvärdera noggrannheten hos de semi-empiriska modeller som finns tillgängliga för att uppskatta byggnadens accelerationer i vindriktningen. För det andra syftar det till att, experimentellt och numeriskt, studera effekterna av strukturella parametrar – massor, styvheter och dämpning – på träkonstruktioners dynamik. Slutligen undersöks hur höga träbyggnader kan modelleras för att korrekt förutsäga modala egenskaper och vindinducerade respons. Denna forskningsuppsats bekräftar farhågorna om att träbyggnader över 15-20 våningar är mer känsliga för vindexcitation än vanliga byggnader med betong- och stålstomme. Några lösningar föreslås för att mildra detta vibrationsproblem. När det gäller jämförelsen av modeller från olika standarder för att beräkna vindinducerade accelerationer visar sig spridningen av resultaten vara mycket stor. Från tester på ett stort limträfackverk visar sig förbandsstyvheterna vara viktiga för att förutsäga modala egenskaper och numeriska reduktioner med enkla fjädermodeller ger rättvisande resultat. När det gäller de strukturella modellerna av konceptuella och verkliga höga träbyggnader, betonar numeriska fallstudier vikten av exakt fördelade massor och styvheter hos byggnadselement, förband och icke-strukturella byggnadsdelar, samt behovet av exakta dämpningsvärden. / Le changement climatique et la densification des villes sont deux défis mondiaux majeurs. Dans le domaine de la construction, les bâtiments en bois de grande hauteur sont perçus comme l'une des solutions les plus durables. D'une part la croissance urbaine verticale est économe en énergie et en ressources, d'autre part les produits forestiers stockent le carbone et ont l'un des rapports résistance mécanique/densité les plus élevés. Si la substitution structurelle du bois au béton ou à l’acier dans les immeubles de grande hauteur suscite des craintes pour les problèmes de sécurité incendie, les ingénieurs et les chercheurs s'inquiètent particulièrement de la réponse dynamique des immeubles en bois de grande hauteur à la mode. En effet, du fait de la faible densité du bois, ils sont plus légers, et à hauteur égale, ils pourraient être plus sensibles aux vibrations induites par le vent que les immeubles traditionnels. Pour satisfaire le confort des personnes aux étages supérieurs, la conception des bâtiments en bois de grande hauteur doit tenir compte judicieusement des vibrations induites par le vent. Les architectes et les ingénieurs en structure ont besoin de méthodes de calcul précises et vérifiées, de modèles numériques utiles et d'une bonne connaissance des propriétés dynamiques des bâtiments en bois de grande hauteur. Premièrement, les travaux de recherche présentés ici tentent d’approfondir la compréhension des phénomènes dynamiques des vibrations induites par le vent dans les immeubles de grande hauteur et d'évaluer la précision des modèles semi-empiriques disponibles pour calculer les accélérations dans la direction du vent. Deuxièmement, ils visent à étudier expérimentalement et numériquement les impacts des paramètres structuraux – masses, rigidités et amortissements – sur la dynamique des structures bois. Finalement, ils suggèrent comment modéliser les bâtiments en bois de grande hauteur pour prédire correctement les propriétés modales et les réponses induites par le vent. Cette thèse de recherche confirme les inquiétudes selon lesquelles les bâtiments en bois de plus de 15-20 étages sont plus sensibles à l'excitation du vent que les bâtiments traditionnels en béton armé ou en acier, et des solutions sont proposés pour atténuer ce problème vibratoire. Concernant la comparaison de différentes méthodes normalisées pour estimer les accélérations induites par le vent, la grande dispersion des résultats n'est pas négligeable. À partir d'essais expérimentaux sur un grand poteau-treillis en lamellé-collé, les rigidités de connexion s’avèrent importantes pour prédire les propriétés modales et les réductions numériques avec de simples modèles à ressort donnent des résultats acceptables. Concernant la précision des modèles structuraux de bâtiments en bois de grande hauteur conceptuels ou réels, des études de cas numériques soulignent l'importance des répartitions exactes des masses et des rigidités des éléments structuraux, des connexions et des éléments de construction non structuraux, ainsi que la nécessité de valeurs d'amortissement précises.
|
Page generated in 0.1032 seconds