• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 51
  • 15
  • 13
  • 11
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Factors affecting root system response to nutrient heterogeneity in forested wetland ecosystems

Neatrour, Matthew Aaron 03 May 2005 (has links)
Soil nutrients are often heterogeneously distributed in space and time at scales relevant to individual plants, and plants can respond by selectively proliferating their roots within nutrient-rich patches. However, many environmental factors may increase or decrease the degree of root proliferation by plants. I explored how soil fertility, nitrogen (N) or phosphorus (P) limitation, and soil oxygen availability affected root system response to nutrient heterogeneity in forested wetland ecosystems of southeastern United States. Fine root biomass was not correlated with soil nutrient availability within wetland ecosystems, but was related to ecosystem-scale fertility. Root systems generally did not respond to P-rich patches in both floodplain (nutrient-rich) and depressional swamps (nutrient-poor) swamps, but results were inconclusive because the growth medium (sand) potentially hindered root growth. In floodplain forests, roots proliferated into N-rich patches but not P-rich patches, even though litterfall N:P ratios were > 15, which suggested that these ecosystems were P-limited. The combination of nutrient and oxygen heterogeneity affected root proliferation and biomass growth of three common floodplain forest species (Liquidambar styraciflua, Fraxinus pennsylvanica, and Nyssa aquatica) in a potted study, which was related to species' flood tolerance. My results suggest that the environmental context of plants can affect roots system response to nutrient heterogeneity in forested wetland ecosystems and highlights the need for field studies that investigate this phenomenon. Learning how environmental conditions affect plant response to nutrient heterogeneity at a fine-scale will provide better predictions of nutrient cycling, plant competition and succession, and forest productivity, which are important factors that determine carbon sequestration and timber production. / Ph. D.
12

Le cycle biogéochimique du manganèse dans un écosystème forestier du Bouclier Canadien

Gingras, Nathalie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
13

A comparison of three rapid evaluation procedures for pine savanna wetlands

Henderson, Cynthia Joan. January 2001 (has links)
Thesis (M.S.)--Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
14

Investigation of wave propagation and antenna radiation in forested environments

Li, Yang, 1982- 21 June 2011 (has links)
Recently, there is emerging interests in deploying wireless sensor networks in forests for applications such as forest fire detection, environmental monitoring and remote surveillance. One challenge in the design of such networks is to ensure reliable communication between sensors located near the ground and over short distances. However, the propagation mechanisms in this type of scenario are complex and not well understood. Furthermore, the design of antennas that can exploit the resulting propagation mechanisms for optimal power transfer remains an open question. The objective of this dissertation is to understand wave propagation and antenna radiation in forested environments in the HF/VHF frequency range. To achieve this objective, several forest scaled models are introduced. The first scaled forest model is a periodic metal cut-wire array. The transmission data inside the cut-wire array are simulated and measured. The propagation mechanisms inside the array are extracted. Several interesting propagation phenomena associated with surface waves and leaky waves are observed and explained. Next, a dielectric rod array consisting of water-filled straws is investigated as a more realistic forest model. Water is chosen since its dielectric constant in the microwave range is close to that of tree trunks in the HF/VHF frequencies. The propagation mechanisms in the water rod array are investigated through scaled model measurements in the laboratory, numerical simulations and an effective medium theory. Randomization effects due to rod spacing and rod height on the propagation mechanisms are also studied. Finally, the transmission data in a real forest are collected in the HF/VHF frequency range to corroborate the findings from the models. The measurement site is located at Bastrop, Texas. For comparison, the transmission data are also measured in an open field. The transmission data are processed and the resulting propagation mechanisms are extracted and compared with the model predictions. As an extension of the propagation study, the potential to achieve directive antenna radiations in a forest is explored. A simple metal cut-wire array environment is considered for ease in modeling. For the case when both the transmit antenna and the receive antenna are embedded inside the array, two design ideas are presented. The first design tries to couple the antenna radiation into the dominant propagation mechanism through phase matching and the second design uses a closely spaced Yagi array to decouple the antenna from its surrounding medium. For the case when the transmit antenna is embedded inside the array and the receive antenna is located outside the array, the leaky wave mechanism is explored to achieve directive radiation. These designs are verified through theoretical predictions, numerical simulations and prototype measurements. / text
15

Le cycle biogéochimique du manganèse dans un écosystème forestier du Bouclier Canadien

Gingras, Nathalie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
16

森林流域における酸素安定同位体組成と主要成分濃度の変化について

加藤, 喜久雄, KATO, Kikuo, 一柳, 錦平, ICHIYANAGI, Kimpei 12 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
17

Growth rates and the definition of old-growth in forested wetlands of the Puget Sound region

Painter, Luke. January 2007 (has links) (PDF)
Thesis (M.E.S.)--The Evergreen State College, 2007. / Title from title screen (viewed on 1/10/2008). Includes bibliographical references (p. 48-51).
18

Factors influencing avian community structure in bottomland hardwood forests of the southeastern United States

Husak, Michael Scott, January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Biological Sciences. / Title from title screen. Includes bibliographical references.
19

Field Survey of Native and Non-Native Subterranean Termites in Southeastern United States Forests

Blount, Nathan Allen 15 December 2012 (has links)
Subterranean termites are ecologically and economically important insects that play major roles in organic matter decomposition and nutrient cycling. The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species known to cause significant damage in urban areas through aggressive consumption of wooden structures and infestations of living trees. Little is known about the presence and impact of C. formosanus in forested ecosystems of the southeastern U.S. as the majority of studies have taken place in urban settings. This study investigates the prevalence of C. formosanus in localized forests, as well as the utilization of living trees by C. formosanus and native subterranean termite species (Reticulitermes spp.). Recently harvested timber stumps were inspected for subterranean termite presence on sites throughout Mississippi and Louisiana. Alate light traps were utilized for further C. formosanus detection. Three sites yielded C. formosanus alate catches, while 7,413 stump inspections produced 406 Reticulitermes spp. infestations.
20

Factors That Affect the Global Positioning System and Global Navigation Satellite System in an Urban and Forested Environment.

Ritchie, Douglas Allen 05 May 2007 (has links) (PDF)
The purpose of this study was to evaluate the accuracy in real time measurements acquired from GPS and GLONASS satellite observations using RTK techniques in an urban and forested environment. To determine this accuracy, 2 data sets of 3-dimensional coordinates were created and compared at 14 stations situated at East Tennessee State University. One data set included coordinates determined by conventional land survey methods; the second was solved by RTK GPS/GLONASS. Once the magnitude of any deviation in the coordinate positions was determined, the contributions to the accuracies from cycle slips, multipath, satellite availability, PDOP, and fixed or float solutions were evaluated. Three points in the urban environment varied from the conventional data set. Multipath was assumed to be the major bias in these points. Seven points in the forested environment varied from the conventional data set. The use of float solutions and high PDOP may have caused this bias.

Page generated in 0.042 seconds