• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novelty-based Clustering Method for On-line Documents

Khy, Sophoin, Ishikawa, Yoshiharu, Kitagawa, Hiroyuki January 2007 (has links)
No description available.
2

Torque-Based Load Estimation for Passenger Vehicles

Nyberg, Tobias January 2021 (has links)
An accurate estimate of the mass of a passenger vehicle is important for several safety systems and environmental aspects. In this thesis, an algorithm for estimating the mass of a passenger vehicle using the recursive least squares methodis presented. The algorithm is based on a physical model of the vehicle and is designed to be able to run in real-time onboard a vehicle and uses the wheel torque signal calculated in the electrical control unit in the engine. Therefore no estimation of the powertrain is needed. This is one contribution that distinguishes this thesis from previous work on the same topic, which has used the engine torque. The benefit of this is that no estimation of the dynamics in the powertrain is needed. The drawback of using this method is that the algorithm is dependenton the accuracy of the estimation done in the engine electrical control unit. Two different versions of the recursive least squares method (RLS) have been developed - one with a single forgetting factor and one with two forgetting factors. The estimation performance of the two versions are compared on several different real-world driving scenarios, which include driving on country roads, highways, and city roads, and different loads in the vehicle. The algorithm with a single forgetting factor estimates the mass with an average error for all tests of 4.42% and the algorithm with multiple forgetting factors estimates the mass with an average error of 4.15 %, which is in line with state-of-the-art algorithms that are presented in other studies. In a sensitivity analysis, it is shown that the algorithms are robust to changes in the drag coefficient. The single forgetting factor algorithm is robust to changes in the rolling resistance coefficient whereas the multiple forgetting factor algorithm needs the rolling resistance coefficient to be estimated with fairly good accuracy. Both versions of the algorithm need to know the wheel radius with an accuracy of 90 %. The results show that the algorithms estimate the mass accurately for all three different driving scenarios and estimate highway roads best with an average error of 2.83 % and 2.69 % for the single forgetting factor algorithm and the multiple forgetting factor algorithm, respectively. The results indicate it is possible to use either algorithm in a real-world scenario, where the choice of which algorithm depends on sought-after robustness.
3

A Study of Anti-collision Multi-tag Identification Algorithms for Passive RFID Systems

Kamineni, Neelima 05 1900 (has links)
The major advantages of radio frequency identification (RFID) technology over barcodes are that the RFID-tagged objects do not require to be in line-of-sight with the reader for their identification and multiple objects can be read simultaneously. But when multiple objects are read simultaneously there is always a problem of collision which reduces the efficiency of the system. This thesis presents a comprehensive study of the dynamic framed slotted ALOHA (DFSA)-based anti-collision multi-tag identification algorithms for passive RFID system. Performance of various DFSA algorithms is compared through extensive simulation results. In addition, a number of simple performance improvement techniques have also been investigated in this thesis, including improved estimation techniques for the number of tags in each read cycle and a low-complexity heuristic stopping criterion that can be easily implemented in the practical system.
4

Uncalibrated robotic visual servo tracking for large residual problems

Munnae, Jomkwun 17 November 2010 (has links)
In visually guided control of a robot, a large residual problem occurs when the robot configuration is not in the neighborhood of the target acquisition configuration. Most existing uncalibrated visual servoing algorithms use quasi-Gauss-Newton methods which are effective for small residual problems. The solution used in this study switches between a full quasi-Newton method for large residual case and the quasi-Gauss-Newton methods for the small case. Visual servoing to handle large residual problems for tracking a moving target has not previously appeared in the literature. For large residual problems various Hessian approximations are introduced including an approximation of the entire Hessian matrix, the dynamic BFGS (DBFGS) algorithm, and two distinct approximations of the residual term, the modified BFGS (MBFGS) algorithm and the dynamic full Newton method with BFGS (DFN-BFGS) algorithm. Due to the fact that the quasi-Gauss-Newton method has the advantage of fast convergence, the quasi-Gauss-Newton step is used as the iteration is sufficiently near the desired solution. A switching algorithm combines a full quasi-Newton method and a quasi-Gauss-Newton method. Switching occurs if the image error norm is less than the switching criterion, which is heuristically selected. An adaptive forgetting factor called the dynamic adaptive forgetting factor (DAFF) is presented. The DAFF method is a heuristic scheme to determine the forgetting factor value based on the image error norm. Compared to other existing adaptive forgetting factor schemes, the DAFF method yields the best performance for both convergence time and the RMS error. Simulation results verify validity of the proposed switching algorithms with the DAFF method for large residual problems. The switching MBFGS algorithm with the DAFF method significantly improves tracking performance in the presence of noise. This work is the first successfully developed model independent, vision-guided control for large residual with capability to stably track a moving target with a robot.

Page generated in 0.1034 seconds