• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase / Structural and functional study of the recognition and metabolization of puric and pyrimidic DNA lesions by the Formamidopyrimidine-DNA glycosylase

Le Bihan, Yann-Vaï 11 May 2009 (has links)
Les oxydations sur les bases nucléiques constituent l’une des sources principale d’apparition de lésions sur l’ADN, qui peuvent être mutagènes ou létales pour les cellules en l’absence de réparation de l’ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l’ADN par excision de base (BER), initie la réparation d’un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par ß,d-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d’accommoder des lésions de tailles très différentes dans son site actif, en l’occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D’autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l’excision par Fpg d’une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l’enzyme, et nous avons précisé structuralement le mode de reconnaissance de l’Hyd par Fpg. D’autre part, nous avons mis en évidence un comportement inattendu de l’enzyme sur ce substrat. En l’occurrence, nous avons montré biochimiquement et structuralement qu’un pontage covalent se formait en quantités non négligeables entre Fpg et l’Hyd dans des conditions physiologiques. / Oxidations on nucleic bases constitute one of the major sources of DNA lesions appearance, which can be mutagenic or lethal for cells in the absence of DNA repair. The prokaryotic Formamidopyrimidine-DNA glycosylase (Fpg), a base excision DNA repair (BER) enzyme, initiate the repair of a wide range of such lesions via its DNA glycosylase (excision of the oxidized base) and AP lyase (cleavage of the AP site by ß,d-elimination) activities. We carried out functional studies by biochemical techniques and structural studies by X-ray crystallography so as to state Fpg’s substrate specificity and catalytic mechanism. Thus, we have been able to underline the structural determinants enabling this enzyme to accommodate lesions of very different sizes in its active site, in this case 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) residues N7-substituted or not by bulky adducts. On the other hand, we structurally and functionally characterized the recognition and excision by Fpg of a pyrimidic lesion, the 5-hydroxy-5-methyl-hydantoin (Hyd). Thus, we have shown that this lesion paired with a cytosine was a good substrate for the enzyme, and stated structurally the recognition mode of Hyd by Fpg. On the other hand, we have underlined an unexpected behaviour of the enzyme on this substrate. In this case, we have biochemically and structurally shown that a covalent link was formed in sizeable quantities between Fpg and Hyd in physiological conditions.
2

Étude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

Le Bihan, Yann-Vaï 11 May 2009 (has links) (PDF)
Les oxydations sur les bases nucléiques constituent l'une des sources principale d'apparition de lésions sur l'ADN, qui peuvent être mutagènes ou létales pour les cellules en l'absence de réparation de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l'ADN par excision de base (BER), initie la réparation d'un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par β,δ-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d'accommoder des lésions de tailles très différentes dans son site actif, en l'occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D'autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l'enzyme, et nous avons précisé structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en évidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montré biochimiquement et structuralement qu'un pontage covalent se formait en quantités non négligeables entre Fpg et l'Hyd dans des conditions physiologiques. Mots clés : Réparation de l'ADN; Réparation par excision de base; Formamidopyrimidine-ADN glycosylase; 2,6- diamino-4-hydroxy-5-formamidopyrimidine; 7,8-dihydro-8-oxo-guanine; 5-hydroxy-5-méthyle-hydantoïne.
3

Etude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase

Le Bihan, Yann-VaÏ 11 May 2009 (has links) (PDF)
Les oxydations sur les bases nucléiques constituent l'une des sources principale d'apparition de lésions sur l'ADN, qui peuvent être mutagènes ou létales pour les cellules en l'absence de réparation de l'ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l'ADN par excision de base (BER), initie la réparation d'un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par ß,d-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d'accommoder des lésions de tailles très différentes dans son site actif, en l'occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D'autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l'excision par Fpg d'une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l'enzyme, et nous avons précisé structuralement le mode de reconnaissance de l'Hyd par Fpg. D'autre part, nous avons mis en évidence un comportement inattendu de l'enzyme sur ce substrat. En l'occurrence, nous avons montré biochimiquement et structuralement qu'un pontage covalent se formait en quantités non négligeables entre Fpg et l'Hyd dans des conditions physiologiques.
4

Identifica??o de genes MUTM em BACs da cana-de-a?ucar e caracteriza??o preliminar destes genes e seus promotores

Trindade, Adilson Silva da 22 February 2013 (has links)
Made available in DSpace on 2014-12-17T14:03:44Z (GMT). No. of bitstreams: 1 AdilsonST_DISSERT.pdf: 1536537 bytes, checksum: ea209d9f1b9abb20e4a9c39ef312c31d (MD5) Previous issue date: 2013-02-22 / Sugarcane has an importance in Brazil due to sugar and biofuel production. Considering this aspect, there is basic research being done in order to understand its physiology to improve production. The aim of this research is the Base Excision Repair pathway, in special the enzyme MUTM DNA-glycosylase (formamidopyrimidine) which recognizes oxidized guanine in DNA. The sugarcane scMUTM genes were analyzed using four BACs (Bacterial Artificial Chromosome) from a sugarcane genomic library from R570 cultivar. The resulted showed the presence in the region that had homology to scMUTM the presence of transposable elements. Comparing the similarity, it was observed a highest similarity to Sorghum bicolor sequence, both nucleotide and peptide sequences. Furthermore, promoter regions from MUTM genes in some grass showed different cis-regulatory elements, among which, most were related to oxidative stress, suggesting a gene regulation by oxidative stress / A cana-de-a??car ? uma das principais culturas brasileiras e importante, principalmente, pela produ??o de a??car e biocombust?vel. Por isso, manter a qualidade das cultivares desta esp?cie tornou-se alvo das pesquisas envolvendo gen?tica e bioqu?mica moleculares. Um dos objetivos destas pesquisas ? descobrir informa??es ?teis sobre o material gen?tico que as cultivares da cana-de-a??car possuem, para utiliz?-las como ferramentas no melhoramento contra intemp?ries que afetam sua produ??o, muitas vezes, de forma dr?stica. O foco deste trabalho ? a via de reparo de DNA conhecida por Reparo por Excis?o de Base, mais precisamente, a enzima DNA-glicosilase MUTM (formamidopirimidina-DNA-glicosilase), a qual reconhece e repara guaninas oxidadas no DNA. A caracteriza??o dos genes MUTM da cana-de-a??car foi realizada a partir das an?lises de quatro BACs (Bacterial Artificial Chromosome) de uma biblioteca gen?mica da cultivar R570. Os resultados obtidos dos alinhamentos mostraram a presen?a marcante de elementos de transposi??o. Al?m disso, foi verificado que os genes MUTM foram altamente similares aos de Sorghum bicolor, tanto em sequ?ncias nucleot?dicas e pept?dicas, como na estrutura g?nica. Foi analisado tamb?m que as regi?es promotoras de genes MUTM em algumas gram?neas apresentam v?rios elementos reguladores de express?o, associados com o estresse oxidativo, indicando uma regula??o por estresse oxidativo
5

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
6

Altered DNA Repair, Antioxidant and Cellular Proliferation Status as Determinants of Susceptibility to Methylmercury Toxicity in Vitro

Ondovcik, Stephanie Lee 20 June 2014 (has links)
Methylmercury (MeHg) is a pervasive environmental contaminant with potent neurotoxic, teratogenic and likely carcinogenic activity, for which the underlying molecular mechanisms remain largely unclear. Base excision repair (BER) is important in mitigating the pathogenic effects of oxidative stress, which has also been implicated in the mechanism of MeHg toxicity, however the importance of BER in MeHg toxicity is currently unknown. Accordingly, we addressed this question using: (1) spontaneously- and Simian virus 40 (SV40) large T antigen-immortalized oxoguanine glycosylase 1-null (Ogg1-/-) murine embryonic fibroblasts (MEFs); and, (2) human Ogg1 (hOgg1)- or formamidopyrimidine glycosylase (Fpg)-expressing human embryonic kidney (HEK) cells; reciprocal in vitro cellular models with deficient and enhanced ability to repair oxidatively damaged DNA respectively. When spontaneously-immortalized wild-type and Ogg1-/- MEFs were exposed to environmentally relevant, low micromolar concentrations of MeHg, both underwent cell cycle arrest but Ogg1-/- cells exhibited a greater sensitivity to MeHg than wild-type controls with reduced clonogenic survival and increased apoptosis, DNA damage and DNA damage response activation. Antioxidative catalase alleviated the MeHg-initiated DNA damage in both wild-type and Ogg1-/- cells, but failed to block MeHg-mediated apoptosis at micromolar concentrations. As in spontaneously immortalized MEFs, MeHg induced cell cycle arrest in SV40 large T antigen-immortalized MEFs, with increased sensitivity to MeHg persisting in the Ogg1-/- MEFs. Importantly, cells seeded at a higher density exhibited compromised proliferation, which protected against MeHg-mediated cell cycle arrest and DNA damage. In the reciprocal model of enhanced DNA repair, hOgg1- and Fpg-expressing cells appeared paradoxically more sensitive than wild-type controls to acute MeHg exposure for all cellular and biochemical parameters, potentially due to the accumulation of toxic intermediary abasic sites. Accordingly, our results provide the first evidence that Ogg1 status represents a critical determinant of risk for MeHg toxicity independent of cellular immortalization method, with variations in cellular proliferation and interindividual variability in antioxidative and DNA repair capacities constituting important determinants of risk for environmentally-initiated oxidatively damaged DNA and its pathological consequences.
7

DNA damage and repair in nail technicians caused by occupational exposure to volatile organic compounds / N. van der Merwe

Van der Merwe, Nicolene January 2010 (has links)
Objectives: The aim of this study was to determine if exposure to volatile organic compounds can lead to DNA damage and impaired DNA repair capacity. Nail cosmetics is a fast growing industry around the world where employees and clients are subjected to various chemical substances which may be harmful to their health: such as formaldehyde, toluene, acetone, xylene, ethylmethacrylate, methylmethacrylate and n–buthyl acetate. These chemicals have the potential to be harmful to their health and exposure to these chemicals should be actively controlled. Formaldehyde is classified as a human carcinogen by the IARC, whereas, toluene and xylene are group three carcinogens, classified in 1999 (not classified as carcinogenic to humans), and various studies have linked DNA damage and impaired DNA repair to the above mentioned substances. Methods: Fifteen nail technicians were monitored by means of personal air sampling, measuring formaldehyde, toluene, xylene, acetone and ethylmethacrylate exposure. Fifteen unexposed subjects were chosen and matched for age and smoking habits with the exposed group. Heparinised blood samples were obtained from each test subject with which the Comet Assay was performed on lymphocytes to determine DNA damage and repair ability. Results: Exposure to ethylmethacrylates and methylmethacrylates leads to DNA damage. Methylmethacrylate causes DNA damage by specifically targeting pyrimidine (fpg) bases. N–buthyl acetate, xylene and acetone exposure impaired DNA repair capacity. The exposed group showed signs of Class III and Class IV DNA damage, whereas the control group had little Class III damage and no indication of Class IV damage. The overall DNA repair ability of the nail technicians was slightly impaired when compared to that of the control group, which is in concurrence with previous studies. Smoking habits and age did not show significant influences on the level of DNA damage and repair when compared with the control group. Conclusion: Exposure to volatile organic compounds such as ethylmethacryale and methylmethacrylate may lead to DNA damage and altered DNA repair in some individuals, although further studies are recommended. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.
8

DNA damage and repair in nail technicians caused by occupational exposure to volatile organic compounds / N. van der Merwe

Van der Merwe, Nicolene January 2010 (has links)
Objectives: The aim of this study was to determine if exposure to volatile organic compounds can lead to DNA damage and impaired DNA repair capacity. Nail cosmetics is a fast growing industry around the world where employees and clients are subjected to various chemical substances which may be harmful to their health: such as formaldehyde, toluene, acetone, xylene, ethylmethacrylate, methylmethacrylate and n–buthyl acetate. These chemicals have the potential to be harmful to their health and exposure to these chemicals should be actively controlled. Formaldehyde is classified as a human carcinogen by the IARC, whereas, toluene and xylene are group three carcinogens, classified in 1999 (not classified as carcinogenic to humans), and various studies have linked DNA damage and impaired DNA repair to the above mentioned substances. Methods: Fifteen nail technicians were monitored by means of personal air sampling, measuring formaldehyde, toluene, xylene, acetone and ethylmethacrylate exposure. Fifteen unexposed subjects were chosen and matched for age and smoking habits with the exposed group. Heparinised blood samples were obtained from each test subject with which the Comet Assay was performed on lymphocytes to determine DNA damage and repair ability. Results: Exposure to ethylmethacrylates and methylmethacrylates leads to DNA damage. Methylmethacrylate causes DNA damage by specifically targeting pyrimidine (fpg) bases. N–buthyl acetate, xylene and acetone exposure impaired DNA repair capacity. The exposed group showed signs of Class III and Class IV DNA damage, whereas the control group had little Class III damage and no indication of Class IV damage. The overall DNA repair ability of the nail technicians was slightly impaired when compared to that of the control group, which is in concurrence with previous studies. Smoking habits and age did not show significant influences on the level of DNA damage and repair when compared with the control group. Conclusion: Exposure to volatile organic compounds such as ethylmethacryale and methylmethacrylate may lead to DNA damage and altered DNA repair in some individuals, although further studies are recommended. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.1022 seconds