• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surfaces de Veech arithmétiques en genre deux: disques de Teichmüller, groupes de Veech et constantes de Siegel-Veech

Lelièvre, Samuel 10 December 2004 (has links) (PDF)
Sur les espaces de modules de différentielles abéliennes existe une action naturelle de SL(2,R). Ses orbites, appelées disques de Teichmüller, se projettent dans les espaces de modules de surfaces de Riemann sur des géodésiques complexes. En tirant en arrière la forme dz du tore standard par des revêtements ramifiés au-dessus d'un seul point, on obtient les surfaces à petits carreaux, points entiers des espaces de modules de différentielles abéliennes. Nous étudions en détail les disques de Teichmüller des points entiers de l'espace des modules des différentielles abéliennes en genre deux avec un zéro double: nombre de disques de Teichmüller pour chaque nombre de carreaux, et leur géométrie; propriétés algébriques des stabilisateurs (sous-groupes de SL(2,Z) qui ne sont pas de congruence); comportement asymptotique des constantes de Siegel-Veech (coefficients des taux de croissance quadratiques des géodésiques fermées) lorsque le nombre de carreaux tend vers l'infini.
2

Formes quasi-modulaires sur des groupes modulaires<br />co-compacts et restrictions des formes modulaires <br />de Hilbert aux courbes modulaires.

Ouled Azaiez, Najib 25 November 2005 (has links) (PDF)
On démontre un théorème de structure pour l'anneau des<br />formes quasi-modulaires $\widetilde{M}_*(\Gamma)$ gradué par<br />le poids, sur n'importe quel groupe discret et co-compact<br />$\Gamma \subset \rm{PSL}(2, \mathbb{R})$ : cet anneau s'avère<br />être toujours infiniment engendré. On calcule le nombre<br />de nouveaux générateurs en chaque poids. Le nombre en<br />question est fixe et est égal à $\dim_{\mathbb{C}} I<br />/ (I \cap \widetilde{I}^2)$ où $I$ et $\widetilde{I}$<br />désignent respectivement l'idéal des formes modulaires <br />sur $\Gamma$ (respectivement l'idéal des formes quasi-modulaires<br />sur $\Gamma$) en poids positifs. On construit des <br />anneaux $\widetilde{R}$ finiment engendrés en poids positif<br />et contenant les anneaux de formes quasi-modulaires sur<br />des groupes modulaires co-compacts. On étudie aussi<br />des restrictions des formes modulaires de Hilbert aux<br />courbes modulaires : on montre que l'espace engendré par<br />une suite de restrictions des formes modulaires de Hilbert<br />sur une courbe modulaire <br />est un sous-espace fermé par crochets de Rankin-Cohen de<br />l'espace des formes modulaires sur la courbe. <br />\vskip 2cm

Page generated in 0.0449 seconds