• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 12
  • Tagged with
  • 153
  • 147
  • 127
  • 127
  • 127
  • 127
  • 123
  • 24
  • 23
  • 14
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Characterization of electrical properties in 4H-SiC by imaging techniques

Österman, John January 2004 (has links)
<p>4H-SiC has physical properties supremely suited for a variety of high power, high frequency and high temperature electronic device applications. To fully take advantage of the material's potential, several problems remain to be solved. Two of the most important are (1) the characterization and understanding of crystallographic defects and their electrical impact on device performance, and (2) the introduction of acceptor dopants, their activation and control of the final distribution of charge carriers. Two main experimental methods have been employed in this thesis to analyze 4H-SiC material with respect to the issues (1) and (2): electron beam induced current (EBIC) and scanning spreading resistance microscopy (SSRM), respectively. </p><p>EBIC yields a map of electron-hole-pairs generated by the electron beam of a scanning electron microscope and collected in the depleted region around a junction. EBIC is conducted in two modes. In the first mode the EBIC contrast constitutes a map of minority carrier diffusion lengths. Results from these measurements are compared to white beam syncrotron x-ray topography and reveal a one-to-one correlation between lattice distortions and the electron diffusion length in n+p 4H-SiC diodes. In the second EBIC mode, the junction is highly reverse biased and local avalanche processes can be studied. By correlating these EBIC results with other techniques it is possible to separate defects detrimental to device performance from others more benign. </p><p>SSRM is a scanning probe microscopy technique that monitors carrier distributions in semiconductors. The method is for the first time successfully applied to 4H-SiC and compared to alternative carrier profiling techniques; spreading resistance profiling (SRP), scanning electron microscopy (SEM) and scanning capacitance microscopy (SCM). SCM successfully monitors the doping levels and junctions, but none of these techniques fulfill the requirements of detection resolution, dynamic range and reproducibility. The SSRM current shows on the other hand a nearly ideal behavior as a function of aluminum doping in epitaxially grown samples. However, the I-V dependence is highly non-linear and the extremely high currents measured indicate a broadening of the contact area and possibly an increased ionization due to sample heating. Finite element calculations are performed to further elucidate these effects. </p><p>SSRM is also applied to characterize Al implantations as a function of anneal time and temperature. The Al doping profiles are imaged on cleaved cross-sections and the measured SSRM current is integrated with respect to depth to obtain a value of the total activation. The evaluation of the annealing series shows a continuous increase of the activation even up to 1950 °C. Other demonstrated SSRM applications include local characterization of electrical field strength in passivating layers of Al2O3, and lateral diffusion and doping properties of implanted boron.</p>
32

Optical fibers with periodic structures

Haakestad, Magnus W. January 2006 (has links)
<p>This thesis concerns some experimental and theoretical issues in fiber optics. In particular, properties and devices based on photonic crystal fibers (PCFs) are investigated.</p><p>The work can be grouped into three parts. In the first part we use sound to control light in PCFs. The lowest order flexural acoustic mode of various PCFs is excited using an acoustic horn. The acoustic wave acts as a traveling long-period grating. This is utilized to couple light from the lowest order to the first higher order optical modes of the PCFs. Factors affecting the acoustooptic coupling bandwidth are also investigated. In particular, the effect of axial variations in acoustooptic phase-mismatch coefficient are studied.</p><p>In the second part of the thesis we use an electric field to control transmission properties of PCFs. Tunable photonic bandgap guidance is obtained by filling the holes of an initially index-guiding PCF with a nematic liquid crystal and applying an electric field. The electric field introduces a polarization-dependent change of transmission properties above a certain threshold field. By turning the applied field on/off, an electrically tunable optical switch is demonstrated.</p><p>The third part consists of two theoretical works. In the first work, we use relativistic causality, i.e. that signals cannot propagate faster than the vacuum velocity of light, to show that Kramers-Kronig relations exist for waveguides, even when material absorption is negligible in the frequency range of interest. It turns out that evanescent modes enter into the Kramers-Kronig relations as an effective loss term. The Kramers-Kronig relations are particularly simple in weakly guiding waveguides as the evanescent modes of these waveguides can be approximated by the evanescent modes of free space. In the second work we investigate dispersion properties of planar Bragg waveguides with advanced cladding structures. It is pointed out that Bragg waveguides with chirped claddings do not give dispersion characteristics significantly different from Bragg waveguides with periodic claddings.</p>
33

Theoretical studies of microcavities and photonic crystals for lasing and waveguiding applications

Rahachou, Aliaksandr January 2006 (has links)
<p>This Licentiate presents the main results of theoretical study of light propagation in photonic structures, namely lasing disk microcavities and photonic crystals. In the first two papers (Paper I and Paper II) we present the developed novel scattering matrix technique dedicated to calculation of resonant states in 2D disk microcavities with the imperfect surface or/and inhomogeneous refractive index. The results demonstrate that the imperfect surface of a cavity has the strongest impact on the quality factor of lasing modes.</p><p>The generalization of the scattering-matrix technique to the quantum-mecha- nical case has been made in Paper III. That generalization has allowed us to treat a realistic potential of quantum-corrals (which can be considered as nanoscale analogues of optical cavities) and to obtain a good agreement with experimental observations.</p><p>Papers IV and V address the novel effective Green's function technique for studying propagation of light in photonic crystals. Using this technique we have analyzed characteristics of surface modes and proposed several novel surface-state-based devices for lasing/sensing, waveguiding and light feeding applications.</p> / Report code: LIU-TEK-LIC 2006:5
34

InAs/GaSb quantum well structures of Infrared Detector applications. : Quantum well structure

Mahajumi, Abu Syed January 2010 (has links)
<p>The detection of MWIR (mid wavelength infrared radiation) is the important for industrial, biomedical and military applications.desirable for the radiation detector to operate in the middle wavelength IR (MWIR) band corresponding to a wavelength band ranging from about 3 microns to about 5 microns.Such MWIR detectors allow forobjects having a similar thermal signature. In addition, MWIR detectors may be used in low power applications such as in night vision for surveillance of personnel.</p><p>Now a day commercially available uncooled IR sensors operating in MWIR region (2 – 5 μm) use microbolometric detectors which are inherently slow. The novel detector of InAs/GaSb quantum well structures overcomes this limitation. However, third-generation high-performance IR  FPAs are already an attractive proposition to the IR system designer. They covered such as multicolour (at least two, and maybe more different spectral bands) with the possibility of simultaneous detection in both space and time, and ever larger sizes of, say, 2000 × 2000, and operating at higher temperatures, even to room temperature, for all cut-off wavelengths.These hetero structures have a type-II band alignment such that the conduction band of InAs layer is lower than the valence band of GaSb layer. The effective bandgap of thesestructures can be adjusted from 0.4 eV to values below 0.1 eV by varying the thickness of constituent layers leading to an enormous range of detector cutoff wavelengths (3-20 This work is focused on the various key characteristics the optical (responsivity and detectivity) and electrical (surface leakage & dark current) of infrared detector and proof of concept is demonstrated on infrared P-I-N photodiodes based on InAs/GaSb superlattices with ~8.5 μm cutoff wavelength and bandgap energy ~150 meV operating at 78 K where supression of surface leakage currents is observed. In certain military applications, it isthermal imaging of airplanes, artillery tanks and otherμm).</p> / Nice research work at Halmstad University
35

Sensorsystem till hinderhanterande robot / Sensor System for Obstacle Handling Robot

Lichtermann, Johan January 2005 (has links)
<p>The projects goal is to construct and program a robot that is controlled from a computer but also have an obstacle handling function that allows the robot to navigate around the object by itself.</p><p>The robot is a simple construction and the number of components and functions is kept at a minimum. A tricycle construction was chosen because it’s the simplest. Communication between the robot and the computer also kept as simple as possible.</p> / <p>Målet med projektet är att konstruera och programmera en robot som går att styra från en dator men det skall även finnas en hinderhanterande funktion som gör att roboten kan åka runt hinder av sig själv.</p><p>Roboten är en enkel konstruktion där antalet komponenter och funktioner hålls nere till ett minimum. En trehjuling valdes då det är den enklaste konstruktionen. Kommunikationen mellan roboten och datorn hålls också så enkel som möjligt.</p>
36

Optical fibers with periodic structures

Haakestad, Magnus W. January 2006 (has links)
This thesis concerns some experimental and theoretical issues in fiber optics. In particular, properties and devices based on photonic crystal fibers (PCFs) are investigated. The work can be grouped into three parts. In the first part we use sound to control light in PCFs. The lowest order flexural acoustic mode of various PCFs is excited using an acoustic horn. The acoustic wave acts as a traveling long-period grating. This is utilized to couple light from the lowest order to the first higher order optical modes of the PCFs. Factors affecting the acoustooptic coupling bandwidth are also investigated. In particular, the effect of axial variations in acoustooptic phase-mismatch coefficient are studied. In the second part of the thesis we use an electric field to control transmission properties of PCFs. Tunable photonic bandgap guidance is obtained by filling the holes of an initially index-guiding PCF with a nematic liquid crystal and applying an electric field. The electric field introduces a polarization-dependent change of transmission properties above a certain threshold field. By turning the applied field on/off, an electrically tunable optical switch is demonstrated. The third part consists of two theoretical works. In the first work, we use relativistic causality, i.e. that signals cannot propagate faster than the vacuum velocity of light, to show that Kramers-Kronig relations exist for waveguides, even when material absorption is negligible in the frequency range of interest. It turns out that evanescent modes enter into the Kramers-Kronig relations as an effective loss term. The Kramers-Kronig relations are particularly simple in weakly guiding waveguides as the evanescent modes of these waveguides can be approximated by the evanescent modes of free space. In the second work we investigate dispersion properties of planar Bragg waveguides with advanced cladding structures. It is pointed out that Bragg waveguides with chirped claddings do not give dispersion characteristics significantly different from Bragg waveguides with periodic claddings.
37

Position Sensitive Detectors : Device Technology and Applications in Spectroscopy

Andersson, Henrik January 2008 (has links)
This thesis deals with the development, processing and characterization of position sensitive detectors and, in addition, to the development of compact and cost effective spectrometers. Position sensitive detectors are used to measure, with great accuracy and speed, the position of a light spot incident on the surface. Their main use is for triangulation, displacement and vibration measurements. A type of position sensitive detector based on the MOS principle and using optically transparent indium tin oxide as a gate contact has been developed. This type of detector utilizes the MOS principle where an induced channel forms beneath the gate oxide in the surface of the Silicon substrate. One and two dimensional detectors have both been fabricated and characterized. The first measurements showed that the linearity did not fulfil expectations and it was suspected that stress induced by the gate contact could be the reason for the seemingly high nonlinearity. Further investigations into both the p-n junction and the MOS type position sensitive detectors lead to the conclusion that the indium tin oxide gate is responsible for inducing a substantial stress in the surface of the detector, thus giving rise to increased position nonlinearity. The heat treatment step which was conducted was determined to be critical as either a too short or too long heat treatment resulted in stress in the gate and channel leading to position nonlinearity. If a correctly timed heat treatment is performed then the detector’s linearity is in parity with the best commercial position sensitive detectors. In addition, the development of very small, compact and cost effective spectrometers has been performed with the aim of constructing devices for use in the process industry. The development of a wedge shaped array of Fabry-Perot interferometers that can be mounted directly on top of a detector makes it possible to construct a very compact spectrometer using the minimum amount of optics. This wedge interferometer has been evaluated by means of array pixel detectors and position sensitive detectors for both the infrared and the visible wavelength ranges. When used with a position sensitive detector it is necessary to use a slit to record the intensity of the interferogram for many points over the detector, equivalent to pixels on an array detector. Usually the use of moving parts in a spectrometer will impose the use of high precision scanning mechanisms and calibration. By using a position sensitive detector for the interferogram readout both the position and the intensity are known for every measurement point and thus the demands placed on the scanning system are minimized. / Denna avhandling behandlar utveckling, processning och karakterisering av positionskänsliga detektorer och även utveckling av kompakta, kostnadseffektiva spektrometrar. Positionskänsliga detektorer används för att mäta positionen av en infallande ljuspunkt på ytan med hög noggrannhet och hastighet. Det huvudsakliga användningsområdet är triangulering, förskjutnings och vibrationsmätningar. En typ av positionskänslig detektor baserad på MOS principen och som använder optiskt transparent indium-tenn-oxid som ”gate” kontakt har utvecklats och karakteriserats. Denna typ av detektor utnyttjar MOS principen där en inducerad kanal bildas under ”gate” oxiden i ytan på kiselsubstratet. Både en endimensionell och en tvådimensionell detektor har tillverkats och karakteriserats. De första mätningarna visade på att linjäriteten inte var den förväntade och det misstänktes att stress inducerad av ”gate” kontakten kunde vara orsaken till den tillsynes för höga ickelinjäriteten. Ytterligare undersökning på både p-n och MOS positionskänsliga detektorer ledde till slutsatsen att indium-tenn-oxid ”gate” kontakten är ansvarig för att orsaka en väsentlig stress i ytan på detektorn och därigenom orsaka ökad olinjäritet i positionsbestämningen. Värmebehandlingssteget som utförs fastställdes vara kritiskt där en för kort eller för lång värmebehandling resulterar i stress i ”gate” kontakten och kanalen som leder till olinjäritet. Om en korrekt värmebehandling utförs så är de tillverkade detektorernas linjäritet i paritet med de bästa kommersiella positionskänsliga detektorerna. Utveckling av väldigt små, kompakta och kostnadseffektiva spektrometrar har också utförts med målet att konstruera enheter för användning i process industrin. Utvecklingen av en kilformad ”array” av Fabry-Perot interferometrar som kan monteras direkt på en detektor gör det möjligt att konstruera en väldigt kompakt spektrometer med minimalt med optik. Denna kilformade interferometer har utvärderats med arraydetektorer, både för det infraröda och det synliga våglängdsområdet, och också med positionskänsliga detektorer. När den används med en positionskänslig detektor så är det nödvändigt att använda en springa att begränsa ljuset med för att registrera intensiteten av interferrogrammet i många punkter över detektorn, vilket är likvärdigt med pixlar på en arraydetektor. Vanligtvis gör användandet av rörliga delar i en spektrometer att mekanismer med hög precision och kalibrering måste användas. Genom att använda en positionskänslig detektor för att läsa ut interferrogrammet så kommer både positionen såväl som ljusintensiteten att vara känd i varje mätpunkt och därför minimeras kravet på förflyttningsmekanismen.
38

Wireless ECG

mediavilla pons, emiliano elias January 2009 (has links)
This document contains the development of an amplifier for an ECG-signal and interfacing it to wireless communication. The purpose of this project is to get a clear ECG-signal without any noise, save it and send it through wireless communication.A challenge of the wireless communication unit is to send as little information as possible to make the communication faster, without loss of information in the ECG-signal.The context for this project is the integration of wireless communication in medical applications for home healthcare. This means that, patients are no longer bound to a specific healthcare location where they are monitored by medical instruments. Wireless communication will not only provide them with safe and accurate monitoring, but also the freedom of movement.
39

Sensorsystem till hinderhanterande robot / Sensor System for Obstacle Handling Robot

Lichtermann, Johan January 2005 (has links)
The projects goal is to construct and program a robot that is controlled from a computer but also have an obstacle handling function that allows the robot to navigate around the object by itself. The robot is a simple construction and the number of components and functions is kept at a minimum. A tricycle construction was chosen because it’s the simplest. Communication between the robot and the computer also kept as simple as possible. / Målet med projektet är att konstruera och programmera en robot som går att styra från en dator men det skall även finnas en hinderhanterande funktion som gör att roboten kan åka runt hinder av sig själv. Roboten är en enkel konstruktion där antalet komponenter och funktioner hålls nere till ett minimum. En trehjuling valdes då det är den enklaste konstruktionen. Kommunikationen mellan roboten och datorn hålls också så enkel som möjligt.
40

Wireless ECG

mediavilla pons, emiliano elias January 2009 (has links)
<p>This document contains the development of an amplifier for an ECG-signal and interfacing it to wireless communication. The purpose of this project is to get a clear ECG-signal without any noise, save it and send it through wireless communication.A challenge of the wireless communication unit is to send as little information as possible to make the communication faster, without loss of information in the ECG-signal.The context for this project is the integration of wireless communication in medical applications for home healthcare. This means that, patients are no longer bound to a specific healthcare location where they are monitored by medical instruments. Wireless communication will not only provide them with safe and accurate monitoring, but also the freedom of movement.</p>

Page generated in 0.1094 seconds