• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 11
  • 11
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fragile X syndrome in Northern Finland:molecular, diagnostic and population genetic aspects

Väisänen, M.-L. (Marja-Leena) 13 September 1999 (has links)
Abstract Fragile X syndrome, the most common inherited form of mental retardation syndrome, is caused by an expansion of the CGG trinucleotide repeat in the 5' UTR of the FMR1 gene, with concurrent hypermethylation of the region, which represses FMR1 expression. The syndrome is associated with the folate-sensitive chromosomal fragile site at Xq27.3 (FRAXA), where the gene responsible for the syndrome was first localized by linkage analysis using RFLP markers. In this study the linkage relationships of the RFLP markersat Xq27-28 and the characteristics of the CGG repeat expansion were investigated in northern Finnish fragile X families and molecular diagnostic methods were applied in order to improve diagnosis of the syndrome. Furthermore, the origin of fragile X mutations in the northern part of Finland was studied by haplotype analysis. Linkage studies were performed in 34 northern Finnish fragile X families/pedigrees using a total of 15 RFLPs (defining 11 loci). A refined genetic map around FRAXA including five RFLP markers having recombination fractions of 0.04 or less with FRAXA was obtained in an international study of 112 affected families, containing linkage data on twelve northern Finnish families. Linkage analysis significantly improved carrier detection in fragile X families compared with previous cytogenetic methods used in diagnosis. The most efficient RFLP-based protocol for carrier detection was proposed, which is based on use of the most adjacent markers and a minimum number of restriction enzymes. CGG repeat expansion of the FMR1 gene was investigated in original families collected for linkage studies and additional new ones. Large CGG repeat expansions (Δ > 500 bp) with concomitant methylation of the adjacent CpG island, i.e. full mutations, were found to be associated with mental retardation completely in males, but only 50% of the females having a full mutation were mentally impaired. Premutations (Δ < 700 bp) were found in healthy carriers. There was a size range of Δ = 500 to 700 bp, where the expansions could be either abnormally methylated or non-methylated, and it appeared that methylation is more important in determining the phenotype than the exact size of an expansion. Instability of the enlarged CGG repeats was detected, leading preferentially to size increases in successive generations. The instability of premutations was found to be stronger and the size increases larger in maternal than in paternal transmissions, and transition to a full mutation occurred only in female transmissions. In addition, the size of a maternal premutation was shown to have an important influence on the risk of its transition to a full mutation when transmitted. The critical premutation size leading invariably to full mutation in the offspring was found to be between Δ = 175 to 200 bp. In one of the studied families a rare contraction of a paternal premutation to a normal CGG repeat number in one of the daughters and further in her son was detected. Direct mutation analysis including measurement of the CGG repeat size and hypermethylation allowed unambiguous diagnosis of carriers and affected individuals in most cases. Haplotype analysis using two tightly linked microsatellite markers flanking the CGG repeat mutation was performed in 60 unrelated northern and eastern Finnish fragile X families. A significant difference was found in allelic and haplotypic distributions between normal X and fragile X chromosomes. A single haplotype, which was present only in 8% of the normal X chromosomes, accounted for 80% of the fragile X chromosomes. This enrichment of one fra(X) mutation in the Finnish population suggests founder effect.
2

Investigation of the origin of the Y393N allele in old order mennonite and non-mennonite maple syrup urine disease patients : analysis of the branched chain [alpha]-keto acid dehydrogenase complex E1[alpha] gene /

Love-Gregory, Latisha Debrett, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2001. / "May 2001." Typescript. Vita. Includes bibliographical references (leaves 145-152). Also available on the Internet.
3

Estudo do gene do receptor de GnRH (GNRHR) no hipogonadismo hipogonadotrófico isolado normósmico e atraso constitucional do crescimento e desenvolvimento / Study of GNRHR gene in isolated hypogonadotropic hypogonadism and constitutional delay of growth and puberty

Deus, Daiane Beneduzzi de 19 November 2013 (has links)
Mutações inativadoras do receptor de GnRH (GNRHR) são a causa genética mais frequente de hipogonadismo hipogonadotrófico isolado (HHI) normósmico. Os genes envolvidos da patogênese do HHI, incluindo o GNRHR, estão associados a um amplo espectro fenotípico, variando de HHI parcial a completo. O atraso constitucional do crescimento e desenvovimento (ACCD) poderia constituir uma variante fenotípica leve do HHI. Neste estudo avaliamos a frequência de mutações no gene GNRHR em pacientes com HHI normósmico e ACCD, bem como correlacionamos o genótipo/fenótipo nesses pacientes. Além disso, avaliamos o efeito fundador de uma mutação do GNRHR (p.R139H) frequente na população brasileira com HHI normósmico. Para esse estudo, selecionamos 116 pacientes com HHI normósmico e 51 com ACCD. Um grupo de 130 indivíduos com desenvolvimento puberal normal foi utilizado como controle. A região codificadora do gene GNRHR foi amplificada por PCR e sequenciada. Análises in silico e in vitro foram realizadas nas duas novas variantes (p.V134G e p.Y283H). Três marcadores de microssatélites (D4S409, D4S2387, D4S3018) foram amplificados e analisados nos pacientes portadores da mutação p.R139H, familiares e controles. No grupo de HHI normósmico, nove mutações (p.N10K,p.Q11K, p.Q106R, p.R139H, p.C200Y, p.R262Q, p.Y284C, p.Y283H, p.V134G) foram identificadas em onze pacientes (9,5%). Entre as mutações identificadas no GNRHR, duas foram descritas pela primeira vez no estudo atual: p.Y283H e p.V134G, cuja análise in vitro demonstrou inativação completa do receptor. Em geral, uma boa correlação genótipo-fenótipo foi observada. Pacientes portadores de mutações inativadoras apresentavam HHI completo e mutações com perda parcial de função causavam HHI parcial, incluindo dois pacientes que evoluíram com reversão do hipogonadismo após reposição androgênica. Por outro lado, não houve diferença fenotípica entre os casos com e sem mutação do GNRHR. Análise de ancestralidade genética da mutação p.R139H demonstrou que todos os casos brasileiros apresentaram o mesmo haplótipo, sugerindo que a mutação p.R139H possui um ancestral comum na população brasileira. Por outro lado o caso familial proveniente da Polônia apresentou apenas um marcador em comum com as famílias brasileiras e estudos mais abrangentes seriam necessários para determinar a origem da mutação p.R139H em indivíduos não Brasileiros. Na casuística de ACCD apenas a mutação p.Q106R foi identificada no gene GNRHR em heterozigose em um paciente. Em conclusão, o GNRHR foi o gene mais comumente afetado, apresentando uma boa correlação genótipo-fenótipo, e deve ser o primeiro candidato para análise genética em HHI normósmico. Os resultados sugerem que a mutação p.R139H possui um ancestral comum na população brasileira. Mutações no GNRHR parecem não estar envolvidas na patogênese do ACCD / GnRH receptor (GNRHR) inactivating mutations are the most common genetic cause of normosmic IHH. The genes involved in the IHH, including GNRHR, have been associated with a large phenotypic spectrum, varying from partial to complete IHH. Constitutional delay of growth and puberty (CDGP) might represent a mild phenotypic variant of IHH. In this study we investigated novel variants and characterized the frequency and phenotype-genotype correlation of GNRHR mutations in normosmic IHH and CDGP patients. Additionally, we determined de cause of the recurrence of GNRHR p.R139H mutation in patients with normosmic IHH. We studied 116 patients with normosmic IHH and 51 with CDGP. The control group was composed by 130 adults with normal pubertal development. The coding region of GNRHR was amplified and automatically sequenced. The two novel variants identified (p.Y283H, p.V134G) were submitted to in silico and in vitro analysis. Three microsatellite markers (D4S409, D4S2387, D4S3018) were amplified by PCR and analyzed in the patients with the p.R139H mutation. In the CDGP group, the previously described mutation p.Q106R was identified in the heterozygous state in one boy. The p.Q106R mutation has been identified in heterozygous state in individuals with normal pubertal development and does not appear be involved on the CDGP phenotype in this patient. In the normosmic IHH group, nine variants were identified (p.N10K, p.Q11K, p.Q106R, p.R139H, p.C200Y, p.R262Q, p.Y284C, p.Y283H, p.V134G) in eleven patients (9.5%). In vitro analysis of the novel variants p.Y283H and the p.V134G demonstrated that both of them cause complete loss of function of the receptor. The founder effect study revealed that all the p.R139H affected Brazilian patients presented the same haplotype, suggesting that the this mutation has a common ancestor in the Brazilian population. Nevertheless the affected Polish family presented a different haplotype, with only one marker in common with the Brazilian families and further studies would be necessary to determine the origin of the p.R139H mutation in the European population. In conclusion this study demonstrated that GNRHR was the most commonly affected gene in normosmic IHH, with a good genotype-phenotype correlation, and should be the first candidate gene for genetic screening in this condition. The results of the founder effect study suggested that the p.R139H mutation has a common ancestor in the Brazilian population. Finally, mutations in the GNRHR do not appear to be involved in the pathogenesis of CDGP
4

Genetic and Molecular analysis of the Spinocerebellar ataxia type 7 (SCA7) disease gene

Jonasson, Jenni January 2000 (has links)
Spinocerebellar ataxia type 7 (SCA7) is a hereditary neurodegenerative disorder affecting the cerebellum, pons and retina. SCA7 patients present with gait ataxia and visual impairment as the main symptoms. Anticipation, commonly observed in SCA7 families, is a phenomenon where an earlier age at onset and a more severe progression of disease is seen in successive generations. In order to identify the gene responsible for SCA7, we performed linkage analysis on a Swedish SCA7 kindred. Evidence for linkage of the SCA7 disease locus to a 32 cM region on chromosome 3p12-21.1, between markers D3S1547 and D3S1274, was established. A number of neurodegenerative disorders associated with anticipation are caused by expanded (CAG)n repeats in their respective disease genes. In order to isolate the SCA7 disease gene we, therefore, screened a human infant brain stem cDNA library for CAG repeat containing clones, mapping to chromosome 3. Four candidate clones were isolated and analysed, but could all be excluded as the SCA7 disease gene. In 1997, the SCA7 disease gene was identified and, as expected, shown to harbour a CAG repeat, expanded in SCA7 patients. Analysis of the SCA7 CAG repeat region in Swedish SCA7 patients demonstrated that CAG repeat size was negatively correlated to age at onset of disease. Furthermore, patients with larger repeats presented with visual impairment, whereas patients with smaller repeats presented with ataxia as the initial symptom. SCA7 is the most common autosomal dominant cerebellar ataxia in Sweden and Finland, but rare in other populations. In order to investigate if the relatively high frequency of SCA7 in these countries is the result of a founder effect in the region, a haplotype analysis was performed on all SCA7 families available. All 7 families shared a common haplotype of at least 1.9 cM surrounding the SCA7 locus. In addition, strong linkage disequilibrium was demonstrated for marker D3S1287 closely linked to the SCA7 gene, suggesting a founder effect for the SCA7 mutation in Sweden and Finland. The function of the SCA7 protein, ataxin-7, is not known and it does not show significant homologies to any previously known proteins. In order to gain insight into the function of ataxin-7 we analysed the expression of ataxin-7 in brain and peripheral tissue from SCA7 patients and controls. In brain, expression was found to be mainly neuronal with a nuclear subcellular localisation. Ataxin-7 expression was found throughout the CNS, not restricted to sites of pathology. We also confirmed previously reported findings of neuronal intranuclear inclusions (NIls) in the brains of SCA7 patients. Based on our findings, we conclude that the cell type specific neurodegeneration in SCA7 is not due to differences in expression pattern in affected and non-affected tissue or the distribution pattern of aggregated protein.
5

Founder Effect In Reintroduced Anatolian Mouflon Ovis Gmelinii Anatolica Valenciennes 1856 Populations

Kayim, Mehmet 01 October 2008 (has links) (PDF)
Reintroduction of Anatolian mouflon population at Bozdag Protection &amp / Breeding Station to its former habitats(Emremsultan Wildlife Development Area in Ankara-Nallihan, and Karadag in Karaman) started in 2004. The magnitude of genetic change among Bozdag and reintroduced populations was evaluated by 11 microsatellite loci. Study populations revealed close results (&plusmn / st.dev.) &ndash / Bozdag population: nk = 2.9091 (&plusmn / 1.1362), AE = 2.0250 (&plusmn / 0.9537), Ho = 0.3830 (&plusmn / 0.2717), He = 0.3956 (&plusmn / 0.2746) / Nallihan population: nk = 2.9091 (&plusmn / 1.1362), AE = 2.0592 (&plusmn / 0.9451), Ho = 0.4086 (&plusmn / 0.2977), He = 0.4052 (&plusmn / 0.2767) / and Karadag population: nk = 2.5455 (&plusmn / 1.1282), AE = 1.8809 (&plusmn / 0.8758), Ho = 0.3388 (&plusmn / 0.2775), He = 0.3607 (&plusmn / 0.2716). Population differences for major genetic parameters were not significant (p &gt / 0.05) by comparisons with paired t-test. Also, temporal change in genetic diversity for Bozdag population was investigated by comparison with temporal data. Temporal changes in genetic parameters were found to be not significant and possible causes for differences were argued. Additionally, genetic diversity and PI computations for different traps were verified and compared to uncover any potential bias due to the catching method. Comparisons did not reveal significant differences illustrating the homogeneity among traps. On the other hand, simulations detected the higher sensitivity of allelic diversity (A) to founder events than P and heterozygosity (Ho &amp / He) levels which supports heterozygosity excess method for bottleneck analysis. With the same simulation analysis, observed genetic diversity within reintroduced samples were found to be in the ranges of expectation (99% CI) indicating that translocated individuals were chosen randomly. Bottleneck analysis based on heterozygosity excess method (one-tailed test for heterozygosity excess: pSMM = 0.28515, pTPM = 0.06445, pIAM = 0.02441) and allele frequency distributions method (normal L-shaped) could not detect a recent genetic bottleneck for Bozdag population. However, simulations determined that these two methods are prone to type II error. Bottleneck detection failure for the study population is probably due to type II error instead of other sources of error like violations of model assumptions.
6

The Coalescent in Boundary-Limited Range Expansions

Nullmeier, Jens 15 January 2014 (has links)
No description available.
7

Hereditary transthyretin amyloidosis (ATTR V30M) : from genes to genealogy / Ärftlig transtyretinamyloidos (Skelleftesjukan) : från arvsanlag till släktträd

Norgren, Nina January 2014 (has links)
Background: Hereditary transthyretin amyloidosis is an autosomal dominant disease with a reduced penetrance. The most common mutation in Sweden is the V30M mutation in the transthyretin gene. Clustering areas of the disease can be found in Northern Sweden, Portugal, Brazil and Japan, although sporadic cases exist worldwide. Despite being caused by the same mutation, there are large differences in onset, penetrance and symptoms of the disease. Swedish V30M patients typically have a later onset with a lower penetrance compared to those from the clustering Portuguese V30M areas. The reasons for these differences have not been fully understood. The aim of this thesis is to study mechanisms that may influence onset and symptoms and investigate why patients carrying the same mutation have different phenotypes. Methods: Genealogy studies were performed on all known V30M carriers in Sweden using standard genealogy methods. DNA samples from patients, asymptomatic carriers and controls from different countries were collected and the transthyretin gene was sequenced. Liver biopsies from patients were used for allele specific expression analysis and a cell assay was used for miRNA analysis with the mutated allele. Gene expression analysis was performed on biopsies from liver and fat from patients and controls. Results and conclusions: Genealogic analysis of all known Swedish V30M carriers managed to link together 73% of the Swedish ATTR V30M population to six different ancestors from the 17th and 18th century, thus dating the Swedish V30M mutation to be more than 400 years old. A founder effect was also visible in descendants to one of the ancestors, producing a later age at onset. Sequencing of the transthyretin gene revealed a SNP in the 3’ UTR of all Swedish V30M carriers that was not found in any of the Japanese or French V30M carriers. The SNP was present on the Swedish transthyretin haplotype and defined the Swedish V30M population as separate from others. However, the SNP itself had no effect upon phenotype or onset of disease. Gene expression analysis of liver and fat tissue revealed a change in genetic profile of the patients’ livers, in contrast to the unchanged profile of the fat tissue. A changed genetic profile of the liver could explain why domino liver recipients develop the disease much earlier than expected.
8

Estudo do gene do receptor de GnRH (GNRHR) no hipogonadismo hipogonadotrófico isolado normósmico e atraso constitucional do crescimento e desenvolvimento / Study of GNRHR gene in isolated hypogonadotropic hypogonadism and constitutional delay of growth and puberty

Daiane Beneduzzi de Deus 19 November 2013 (has links)
Mutações inativadoras do receptor de GnRH (GNRHR) são a causa genética mais frequente de hipogonadismo hipogonadotrófico isolado (HHI) normósmico. Os genes envolvidos da patogênese do HHI, incluindo o GNRHR, estão associados a um amplo espectro fenotípico, variando de HHI parcial a completo. O atraso constitucional do crescimento e desenvovimento (ACCD) poderia constituir uma variante fenotípica leve do HHI. Neste estudo avaliamos a frequência de mutações no gene GNRHR em pacientes com HHI normósmico e ACCD, bem como correlacionamos o genótipo/fenótipo nesses pacientes. Além disso, avaliamos o efeito fundador de uma mutação do GNRHR (p.R139H) frequente na população brasileira com HHI normósmico. Para esse estudo, selecionamos 116 pacientes com HHI normósmico e 51 com ACCD. Um grupo de 130 indivíduos com desenvolvimento puberal normal foi utilizado como controle. A região codificadora do gene GNRHR foi amplificada por PCR e sequenciada. Análises in silico e in vitro foram realizadas nas duas novas variantes (p.V134G e p.Y283H). Três marcadores de microssatélites (D4S409, D4S2387, D4S3018) foram amplificados e analisados nos pacientes portadores da mutação p.R139H, familiares e controles. No grupo de HHI normósmico, nove mutações (p.N10K,p.Q11K, p.Q106R, p.R139H, p.C200Y, p.R262Q, p.Y284C, p.Y283H, p.V134G) foram identificadas em onze pacientes (9,5%). Entre as mutações identificadas no GNRHR, duas foram descritas pela primeira vez no estudo atual: p.Y283H e p.V134G, cuja análise in vitro demonstrou inativação completa do receptor. Em geral, uma boa correlação genótipo-fenótipo foi observada. Pacientes portadores de mutações inativadoras apresentavam HHI completo e mutações com perda parcial de função causavam HHI parcial, incluindo dois pacientes que evoluíram com reversão do hipogonadismo após reposição androgênica. Por outro lado, não houve diferença fenotípica entre os casos com e sem mutação do GNRHR. Análise de ancestralidade genética da mutação p.R139H demonstrou que todos os casos brasileiros apresentaram o mesmo haplótipo, sugerindo que a mutação p.R139H possui um ancestral comum na população brasileira. Por outro lado o caso familial proveniente da Polônia apresentou apenas um marcador em comum com as famílias brasileiras e estudos mais abrangentes seriam necessários para determinar a origem da mutação p.R139H em indivíduos não Brasileiros. Na casuística de ACCD apenas a mutação p.Q106R foi identificada no gene GNRHR em heterozigose em um paciente. Em conclusão, o GNRHR foi o gene mais comumente afetado, apresentando uma boa correlação genótipo-fenótipo, e deve ser o primeiro candidato para análise genética em HHI normósmico. Os resultados sugerem que a mutação p.R139H possui um ancestral comum na população brasileira. Mutações no GNRHR parecem não estar envolvidas na patogênese do ACCD / GnRH receptor (GNRHR) inactivating mutations are the most common genetic cause of normosmic IHH. The genes involved in the IHH, including GNRHR, have been associated with a large phenotypic spectrum, varying from partial to complete IHH. Constitutional delay of growth and puberty (CDGP) might represent a mild phenotypic variant of IHH. In this study we investigated novel variants and characterized the frequency and phenotype-genotype correlation of GNRHR mutations in normosmic IHH and CDGP patients. Additionally, we determined de cause of the recurrence of GNRHR p.R139H mutation in patients with normosmic IHH. We studied 116 patients with normosmic IHH and 51 with CDGP. The control group was composed by 130 adults with normal pubertal development. The coding region of GNRHR was amplified and automatically sequenced. The two novel variants identified (p.Y283H, p.V134G) were submitted to in silico and in vitro analysis. Three microsatellite markers (D4S409, D4S2387, D4S3018) were amplified by PCR and analyzed in the patients with the p.R139H mutation. In the CDGP group, the previously described mutation p.Q106R was identified in the heterozygous state in one boy. The p.Q106R mutation has been identified in heterozygous state in individuals with normal pubertal development and does not appear be involved on the CDGP phenotype in this patient. In the normosmic IHH group, nine variants were identified (p.N10K, p.Q11K, p.Q106R, p.R139H, p.C200Y, p.R262Q, p.Y284C, p.Y283H, p.V134G) in eleven patients (9.5%). In vitro analysis of the novel variants p.Y283H and the p.V134G demonstrated that both of them cause complete loss of function of the receptor. The founder effect study revealed that all the p.R139H affected Brazilian patients presented the same haplotype, suggesting that the this mutation has a common ancestor in the Brazilian population. Nevertheless the affected Polish family presented a different haplotype, with only one marker in common with the Brazilian families and further studies would be necessary to determine the origin of the p.R139H mutation in the European population. In conclusion this study demonstrated that GNRHR was the most commonly affected gene in normosmic IHH, with a good genotype-phenotype correlation, and should be the first candidate gene for genetic screening in this condition. The results of the founder effect study suggested that the p.R139H mutation has a common ancestor in the Brazilian population. Finally, mutations in the GNRHR do not appear to be involved in the pathogenesis of CDGP
9

Caractérisation de variants génétiques pour estimer la prévalence de Niemann-Pick type C au Québec

Labrecque, Marjorie 07 1900 (has links)
La maladie de Niemann-Pick type C (NP-C) est une maladie autosomal récessive rare neurodégénérative, pan-ethnique et avec variabilité phénotypique. La forme classique se trouve chez les patients juvéniles, mais des patients de tous les âges existent. Les symptômes incluent des signes viscéraux, moteurs et neurologiques. La maladie est causée par une mutation dans le gène NPC1 ou NPC2. La prévalence mondiale se trouve à environ un cas par 100 000 naissances, mais varie beaucoup selon les populations. Pour cette raison, nous avons voulu identifier et classifier des variants qui se trouve dans la population québécoise pour faire une estimation de la prévalence de NP-C au Québec. Nous croyons que cette maladie neurodégénérative est sous-diagnostiquée. Pour identifier le pool génétique de la population québécoise, nous avons utilisé une approche bio-informatique. À l’aide des données de séquençage des 1109 participants sains de la cohorte CARTaGENE, nous avons identifié des variants rares, ayant des fréquences alléliques inférieures à 1%, dans les gènes NPC1 et NPC2. Les données de séquençage de l’ARN et d’exome ont été alignées, les variants ont été détectés et annotés avec différents scores de pathogénicité. Les variants ont ensuite été classifiés à l’aide des lignes directrices de l’ACMG. À l’aide de notre pipeline bio-informatique, nous avons identifié 37 variants rares. Parmi ces variants, un, p.I1061T, a été classifié comme pathogénique comme il l’est dans d’autres bases de données et un, p.P543L, initialement classifié comme potentiellement pathogénique a été classifié comme pathogénique dans notre population. Le variant p.P543L est d’ailleurs possiblement une mutation fondatrice chez les Canadiens-Français. La prévalence mesurée à l’aide des fréquences alléliques de ces deux variants est de 0,61 cas par 100 000 naissances. Cette étude a permis d’identifier deux variants pathogéniques dans une population saine, c’est-à dire sans maladie neurodégénérative connue. Nous avons ensuite pu estimer pour la première fois la prévalence minimale de NP-C au Québec. Les résultats suggèrent que NP-C est sous-diagnostiquée dans notre population. Avec ces informations, les méthodes de diagnostic pourront être ajustées pour accélérer la détection de NP-C au Québec et ainsi aider les patients en donnant accès au traitement disponible pour réduire les symptômes neurologiques. / Niemann-Pick type C disease (NP-C) is a rare autosomal recessive neurodegenerative, pan-ethnic disease with heterogenous symptoms. The classical form mainly affects juvenile patients, but patients of varying ages exist. The main symptoms are visceral, motor and neurological. The disease is caused by mutations in the NPC1 or NPC2 gene. The worldwide prevalence is approximately one case per 100 000 births but varies between populations. Therefore, we wanted to identify and classify rare variants found in Quebec’s population to estimate the prevalence of NP-C in this population. We hypothesized that NP-C is under-diagnosed in Quebec. To determine the genetic pool of NP-C in Quebec’s population, we used a bioinformatics pipeline. With the sequencing data of 1109 healthy individuals of the CARTaGENE cohort, we identified rare variants, with a minor allele frequency inferior to 1%, in the NPC1 and NPC2 genes. The sequencing data from RNA and exome sequencing was aligned and the variants were found and annotated with different pathogenicity scores. The variants were then classified using the ACMG guidelines. Using our bioinformatics pipeline, we identified a total of 37 rare variants. In those variants, one, p.I1061T, was directly classified as pathogenic since it was classified as that in all databases. The other one, p.P543L, was initially classified as likely pathogenic, but we were able to reclassify it as pathogenic in our population. The p.P543L variant is possibly a founder mutation in the French-Canadian population. Next, we estimated the prevalence based on the allelic frequencies of those two variants in our cohort. We found a prevalence of 0,61 case per 100 000 births. This study allowed us to identify two pathogenic variants in a healthy population, without known neurodegenerative disease. We were also able to estimate the first ever minimal prevalence for NP-C in Quebec. Our results suggests that NP-C is underdiagnosed in our population. With the information collected here, we would be able to adjust the diagnostic methods of NP-C in Quebec to then be able to help the patients by giving them access to the available treatment to reduce neurological symptoms.
10

Découverte d'un gène causant une ataxie spastique héréditaire dominante dans la population de Terre-Neuve

Bourassa, Cynthia 04 1900 (has links)
Les ataxies spastiques héréditaires forment une famille hétérogène de désordres qui ont des points communs avec les ataxies héréditaires et les paraplégies spastiques héréditaires. Un de ces éléments est une ataxie, soit une difficulté de coordination des membres souvent due à un dommage au cervelet. L’autre est une spasticité des membres inférieurs, souvent due à des dommages à la voie cortico-spinale. Une seule ataxie spastique à hérédité autosomique dominante a été rapportée dans la littérature, et il s’agit de SPAX1. À l’aide de trois familles de Terre-Neuve présentant ce phénotype, le locus a été identifié en 2002. Dans ce mémoire, c’est de la découverte du gène causal dont il est question. La mutation a été trouvée dans le gène VAMP1, qui encode la protéine synaptobrévine 1, une protéine synaptique impliquée dans l’exocytose des neurotransmetteurs. Il est aussi question de la caractérisation fonctionnelle de la mutation sur l’ARN et des conséquences possibles sur la protéine, concordant avec les symptômes de la maladie. / Hereditary spastic ataxias comprise a family of heterogeneous disorders resembling both hereditary ataxias and hereditary spastic paraplegias. The similar symptoms are ataxia, which is a problem with limb coordination due to cerebellar damage, and lower-limb spasticity due to corticospinal tract degeneration. Only one spastic ataxia inherited in an autosomal dominant fashion has been reported in the literature: SPAX1. The locus was identified in 2002 using three families from Newfoundland with the specific phenotype. This thesis reports the discovery of the causative mutation in the VAMP1 gene, which encodes VAMP1/synaptobrevin 1, a synaptic protein involved in neurotransmitter exocytosis. Experiments characterizing the effect of the mutation on RNA were conducted, leading to a possible molecular explanation of the symptoms.

Page generated in 0.0637 seconds