• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques résultats mathématiques en thermodynamique des fluides compressibles / Some mathematical results in thermodynamic of compressible fluids

Jesslé, Didier 27 June 2013 (has links)
Dans cette thèse, nous étudions les écoulements de fluides compressibles décrits par les équations de Navier-Stokes-Fourier dans les cas stationnaire et instationnaire et avec des conditions de bord assurant l’isolation thermique et mécanique du fluide. On commence par le cas stationnaire barotrope et des conditions de Navier à la frontière du domaine. La pression est donc de la forme p(%) = % où est appelé coefficient adiabatique et nous arrivons à montrer l’existence de solutions faibles pour > 1.On généralise ensuite ce résultat aux équations de Navier-Stokes-Fourier avec conduction de la chaleur et glissement (partiel ou total) au bord, toujours dans le cas stationnaire. On montre cette fois-ci l’existence de solutions faibles particulières appelées solutions entropiques variationnelles respectant l’inégalité d’entropie pour > 1 et l’existence de solutions faibles respectant le bilan de l’énergie totale au sens faible pour > 5/4. On travaille ensuite sur les écoulements instationnaires décrits par les équations de Navier-Stokes-Fourier sur une large variété de domaines non bornés, tout d’abord pour des conditions de bord d’adhérence puis pour des conditions de Navier à la frontière (ce qui restreintquelque peu la diversité des domaines non bornés admissibles). On arrive à montrer l’existence de solutions faibles particulières respectant l’inégalité d’entropie et une inégalité de dissipation remplaçant l’égalité de conservation d’énergie totale dans le volume qui n’a plus de sens dans les domaines non bornés. Par après, on met en place une inégalité dite d’entropie relative dont on montre qu’elle est respectée par certaines des solutions faibles exhibées auparavant. Ces solutions sont appelées solutions dissipatives. On parvient à prouver que pour chaque donnée initiale, il existe au moins une solution dissipative. Cette inégalité d’entropie relative nous permet de démontrer le principe d’unicité forte-faiblepour nos solutions dissipatives. Précisément, cela signifie qu’une solution dissipative et une solution forte issues des mêmes données initiales coïncident sur le temps maximal d’existence de la solution forte. La propriété d’unicité forte-faible donne un fondement à la notion de solution dissipative pour les domaines non bornés. / In this thesis, we study the Navier-Stokes-Fourier system describing the flow of compressible fluids both in the steady and unsteady case and we suppose that the fluid is thermally and mechanically isolated. We start with the case of a steady barotropic fluid and Navier boundary conditions. In this situation, the pressure law considered is of the form p(%) = %, where is called the adiabatic constant. We show the existence of weak solutions for > 1. We then extend this result to the complete Navier-Stokes-Fourier system with heat conductivity and slip or partially slip boundary conditions, once again in thesteady case. In this setup, we prove the existence of a specific type of weak solutions, called variationnal entropy solutions, which satisfy the entropy inequality for > 1 and the existence of weak solutions satisfying the conservation of total energy in its weak formulation for > 5/4. We then treat the unsteady flows described by the complete Navier-Stokes-Fourier system on a large class of unbouded domains, first with no-slip boundary conditions and then with the Navier boundary conditions which reduce the class of the admissible unbounded domains. We manage to prove the existence of a specific type of weak solutions verifying the entropy inequality and a dissipation inequality instead of the global conservation of total energy which is no more relevant in the unbounded domains. Afterwards, we establish a new inequality called relative entropy inequality and we show that it is satisfied by some of the weak solutions presented previously. These are called dissipative solutions. Next we show that for any given initial data there exists at least one dissipative solution. This observation allows us toperform the proof of the weak-strong uniqueness principle in the class of dissipative solutions. Precisely, it means that a dissipative solution and a classical one emanating from the same initial data coincide as long as the latter exists. The weak-strong uniqueness property justifies the concept of dissipative solutions in the situation of unbounded domains.
2

Termální konvekce s volným povrchem v rotujícím ledovém měsíci / Termální konvekce s volným povrchem v rotujícím ledovém měsíci

Kuchta, Miroslav January 2011 (has links)
Thermal convection with evolving surface in a rotating icy satellite Master's Thesis author: Miroslav Kuchta∗ supervisor: Doc. RNDr. Ondřej Čadek, CSc.† Keywords: Stokes-Fourier system, Free surface, Finite-differences Abstract This thesis is concerned with modeling the surface deformations and thermal convection in a rotating icy satellite. The system of gov- erning equations, that we derive from general balance laws, is solved numerically using the finite-difference method on a staggered grid. Free surface is understood as implicitly described interface between the satellite and an almost massless medium with viscosity orders of magnitude smaller than ice. We design a numerical method capable of tracking the deforming surface. The numerical method is applied to models with temperature-dependent viscosity. ∗ Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic. miroslav.kuchta@gmail.com † Department of Geophysics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic. oc@karel.troja.mff.cuni.cz 1
3

Quelques problèmes mathématiques en thermodynamique des fluides visqueux et compressibles

Brezina, Jan 20 March 2008 (has links) (PDF)
Nous présentons une théorie d'existence complète pour le système physique composé de fluides visqueux et des corps rigides plongés dedans. Nous considérons un domaine borné et les conditions aux limites de Dirichlet homogènes pour la vélocité. Le fluide et les corps sont conducteurs thermiques et ils échangent la chaleur. L'existence de la solution variationnelle globale dans le temps est démontrée par la méthode de pénalisation par la viscosité due à Conca, San Martin et Tucsnak. Dans les approximations ainsi que dans la dernière limite nous employons la théorie d'existence pour un fluide visqueux compressible développé par Feireisl. Le deuxième sujet est une amélioration dans la théorie d'existence pour un écoulement barotropique stationnaire. Nous utilisons les estimations potentielles pour la pression proposées par Plotnikov, Sokolowski, Frehse, Goj et Steinhauer. En utilisant ces estimations avec la théorie potentielle non-linéaire nous en concluons les estimations à priori et nous prouvons l'existence des solutions faibles
4

Mathematical analysis of equations describing the flow of compressible heat conducting fluids / Mathematical analysis of equations describing the flow of compressible heat conducting fluids

Axmann, Šimon January 2016 (has links)
Title: Mathematical analysis of equations describing the flow of compressible heat conducting fluids Author: Šimon Axmann Department: Mathematical Institute of Charles University Supervisor: doc. Mgr. Milan Pokorný, Ph.D., Mathematical Institute of Charles University Abstract: The present thesis is devoted to the mathematical analysis of equa- tions describing the flow of viscous compressible newtonian fluid in various time regimes. In particular, we present existence results for three problems arising as special cases of a general model derived in the introductory part. The first chap- ter deals with time-periodic solutions to the full Navier-Stokes-Fourier system for heat-conducting fluid. The second chapter contains the proof of existence of steady solutions to a system arising from phase field model for two-phase com- pressible fluid. Finally, in the last section we study steady strong solutions to the Navier-Stokes equations under the additional assumption that the fluid is suffi- ciently dense. For each problem a different concept of the solution is considered, on the other hand in all cases an essential role is played by the crucial quantity effective viscous flux. Keywords: compressible Navier-Stokes system; weak solution; entropy variational solution; large data
5

Stlačitelné Navier-Stokes-Fourierovy rovnice pro adiabatický koeficient blízko jedničky / Compressible Navier-Stokes-Fourier system for the adiabatic coefficient close to one

Skříšovský, Emil January 2019 (has links)
In the present thesis we study the compressible Navier-Stokes-Fourier sys- tem. This is a system of partial differential equations describing the evolutionary problem for an adiabatic flow of a heat conducting compressible viscous fluid in a bounded domain. Here we consider the problem in two dimensions with zero Dirichlet boundary conditions for velocity. The cold pressure term in the pressure law for the momentum equation is here considered in the form pC(ϱ) ∼ ϱ logα (1+ϱ) for some α > 0, for which we need to work on the scale of Orlicz spaces in order to obtain useful estimates and in those space we formulate the problem weakly and also establish the weak compactness of the solution. The main result of this thesis is Theorem 6.1 where we show the existence of a weak solution with no assumptions on the size of the data and on arbitrary large time intervals. 1
6

Nestlačitelné tekutiny s viskozitou závislou na teplotě, numerická analýza a počítačové simulace / Incompressible fluids with temperature dependent viscosity - numerical analysis and computational simulations

Ulrych, Oldřich January 2014 (has links)
Title: Incompressible fluids with temperature dependent visco- sity, numerical analysis and computational simulations Author: RNDr. Oldřich Ulrych Department: Mathematical Institute of Charles University Supervisor: prof. RNDr. Josef Málek, CSc., DSc. Abstract: Flows of incompressible fluids connected with significant exchange of ther- mal and mechanical energy and with material moduli varying with the temperature and the shear rate, are described by the balance equations for linear momentum and energy, complemented by suitable constitution equations for the Cauchy stress and the heat flux. Assuming sufficient smoothness of quantities involved, the energy balance equation exhibits several equivalent formulations. However, within the context of weak solution, these formulations are, in general, not equivalent. This thesis is based on the existence theory for the generalized Navier-Stokes-Fourier system describing planar flow of fluids with a shear and temperature dependent vis- cosity. We specify parameters of a generalized power-law model under which weak formulations of balance equations are meaningful and both considered formulations of the energy balance equation are equivalent. Supported by the existence theory, we propose and numerically solve several problems pursuing the aim to systematically compare the...
7

Problémes bien-posés et étude qualitative pour des équations cinétiques et des équations dissipatives. / Well-posedness and qualitative study for some kinetic equations and some dissipative equations

Cao, Hongmei 14 October 2019 (has links)
Dans cette thèse, nous étudions certaines équations différentielles partielles avec mécanisme dissipatif, telles que l'équation de Boltzmann, l'équation de Landau et certains systèmes hyperboliques symétriques avec type de dissipation. L'existence globale de solutions ou les taux de dégradation optimaux des solutions pour ces systèmes sont envisagées dans les espaces de Sobolev ou de Besov. Les propriétés de lissage des solutions sont également étudiées. Dans cette thèse, nous prouvons principalement les quatre suivants résultats, voir les chapitres 3-6 pour plus de détails. Pour le premier résultat, nous étudions le problème de Cauchy pour le non linéaire inhomogène équation de Landau avec des molécules Maxwelliennes (= 0). Voir des résultats connus pour l'équation de Boltzmann et l'équation de Landau, leur existence globale de solutions est principalement prouvée dans certains espaces de Sobolev (pondérés) et nécessite un indice de régularité élevé, voir Guo [62], une série d'oeuvres d'Alexander Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] et des références à ce sujet. Récemment, Duan-Liu-Xu [52] et Morimoto-Sakamoto [145] ont obtenu les résultats de l'existence globale de solutions à l'équation de Boltzmann dans l'espace critique de Besov. Motivés par leurs oeuvres, nous établissons l'existence globale de la solution dans des espaces de Besov spatialement critiques dans le cadre de perturbation. Précisément, si le datum initial est une petite perturbation de la distribution d'équilibre dans l'espace Chemin-Lerner eL 2v (B3=2 2;1 ), alors le problème de Cauchy de Landau admet qu'une solution globale appartient à eL 1t eL 2v (B3=2 2;1 ). Notre résultat améliore le résultat dans [62] et étend le résultat d'existence globale de l'équation de Boltzmann dans [52, 145] à l'équation de Landau. Deuxièmement, nous considérons le problème de Cauchy pour l'équation de Kac non-coupée spatialement inhomogène. Lerner-Morimoto-Pravda-Starov-Xu a considéré l'équation de Kac non-coupée spatialement inhomogène dans les espaces de Sobolev et a montré que le problème de Cauchy pour la fluctuation autour de la distribution maxwellienne admise S 1+ 1 2s 1+ 1 2s Propriétés de régularité Gelfand-Shilov par rapport à la variable de vélocité et propriétés de régularisation G1+ 1 2s Gevrey à la variable de position. Et les auteurs ont supposé qu'il restait encore à déterminer si les indices de régularité 1 + 1 2s étaient nets ou non. Dans cette thèse, si la donnée initiale appartient à l'espace de Besov spatialement critique, nous pouvons prouver que l'équation de Kac inhomogène est bien posée dans un cadre de perturbation. De plus, il est montré que la solution bénéficie des propriétés de régularisation de Gelfand-Shilov en ce qui concerne la variable de vitesse et des propriétés de régularisation de Gevrey en ce qui concerne la variable de position. Dans notre thèse, l'indice de régularité de Gelfand-Shilov est amélioré pour être optimal. Et ce résultat est le premier qui présente un effet de lissage pour l'équation cinétique dans les espaces de Besov. A propos du troisième résultat, nous considérons les équations de Navier-Stokes-Maxwell compressibles apparaissant dans la physique des plasmas, qui est un exemple concret de systèmes composites hyperboliques-paraboliques à dissipation non symétrique. On observe que le problème de Cauchy pour les équations de Navier-Stokes-Maxwell admet le mécanisme dissipatif de type perte de régularité. Par conséquent, une régularité plus élevée est généralement nécessaire pour obtenir le taux de dégradation optimal de L1(R3)-L2(R3) type, en comparaison avec cela pour l'existence globale dans le temps de solutions lisses. / In this thesis, we study some kinetic equations and some partial differential equations with dissipative mechanism, such as Boltzmann equation, Landau equation and some non-symmetric hyperbolic systems with dissipation type. Global existence of solutions or optimal decay rates of solutions for these systems are considered in Sobolev spaces or Besov spaces. Also the smoothing properties of solutions are studied. In this thesis, we mainly prove the following four results, see Chapters 3-6 for more details. For the _rst result, we investigate the Cauchy problem for the inhomogeneous nonlinear Landau equation with Maxwellian molecules ( = 0). See from some known results for Boltzmann equation and Landau equation, their global existence of solutions are mainly proved in some (weighted) Sobolev spaces and require a high regularity index, see Guo [62], a series works of Alexandre-Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] and references therein. Recently, Duan-Liu-Xu [52] and Morimoto-Sakamoto [145] obtained the global existence results of solutions to the Boltzmann equation in critical Besov spaces. Motivated by their works, we establish the global existence of solutions for Landau equation in spatially critical Besov spaces in perturbation framework. Precisely, if the initial datum is a small perturbation of the equilibrium distribution in the Chemin-Lerner space eL 2v (B3=2 2;1 ), then the Cauchy problem of Landau equation admits a global solution belongs to eL 1t eL 2v (B3=2 2;1 ). Our results improve the result in [62] and extend the global existence result for Boltzmann equation in [52, 145] to Landau equation. Secondly, we consider the Cauchy problem for the spatially nhomogeneous non-cuto_ Kac equation. Lerner-Morimoto-Pravda-Starov-Xu [117] considered the spatially inhomogeneous non-cuto_ Kac equation in Sobolev spaces and showed that the Cauchy problem for the uctuation around the Maxwellian distribution admitted S 1+ 1 2s 1+ 1 2s Gelfand-Shilov regularity properties with respect to the velocity variable and G1+ 1 2s Gevrey regularizing properties with respect to the position variable. And the authors conjectured that it remained still open to determine whether the regularity indices 1+ 1 2s is sharp or not. In this thesis, if the initial datum belongs to the spatially critical Besov space eL 2v (B1=2 2;1 ), we prove the well-posedness to the inhomogeneous Kac equation under a perturbation framework. Furthermore, it is shown that the weak solution enjoys S 3s+1 2s(s+1) 3s+1 2s(s+1) Gelfand-Shilov regularizing properties with respect to the velocity variableand G1+ 1 2s Gevrey regularizing properties with respect to the position variable. In our results, the Gelfand-Shilov regularity index is improved to be optimal. And this result is the _rst one that exhibits smoothing e_ect for the kinetic equation in Besov spaces. About the third result, we consider compressible Navier-Stokes-Maxwell equations arising in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems with non-symmetric dissipation. It is observed that the Cauchy problem for Navier-Stokes-Maxwell equations admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regularity is usually needed to obtain the optimal decay rate of L1(R3)-L2(R3) type, in comparison with that for the global-in-time existence of smooth solutions.

Page generated in 0.0575 seconds