• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 13
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 104
  • 104
  • 104
  • 22
  • 18
  • 18
  • 16
  • 16
  • 14
  • 14
  • 11
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Laser induced fluorescence as a probe of detailed reaction dynamics : conventional techniques and Fourier transform Doppler spectroscopy

Murphy, Edmond Joseph January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1980. / MICROFICHE COPY AVALABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / by Edmond Joseph Murphy, Jr. / Ph.D.
62

Spectral simplification techniques for high resolution fourier transform spectroscopic studies

Appadoo, Dominique R. T. (Dominique Rupert Thierry), 1964- January 2002 (has links)
Abstract not available
63

Spectral simplification techniques for high resolution fourier transform spectroscopic studies

Appadoo, Dominique R. T. (Dominique Rupert Thierry), 1964- January 2002 (has links)
For thesis abstract select View Thesis Title, Contents and Abstract
64

Tomographic Visible Spectroscopy of Plasma Emissivity and Ion Temperatures

Glass, Fenton John, f.glass@fz-juelich.de January 2004 (has links)
Extending the use of Doppler spectroscopy as an important plasma diagnostic -- by developing a multi-channel system capable of tomography -- is the foundation of this thesis. A system which can simultaneously measure the emissivity, temperature and flow velocity of plasma ions has been installed, calibrated and operated on the H-1NF heliac, yielding comprehensive and interesting results. The measurements are time-resolved, made from a large range of viewing positions and, using scalar tomographic inversion methods, can be unfolded to give two-dimensional images of ion emissivity and temperature. The flow velocity profiles, while not inverted, nevertheless lead to a greater understanding of the plasma behaviour.¶ Fifty-five lens-coupled optical fibres, mounted on a large rotatable stainless steel ring, encircle the plasma poloidally and transport light to a multi-channel Fourier-transform spectrometer. This `coherence-imaging' spectrometer employs an electro-optically modulated birefringent crystal plate to monitor the coherence of an isolated spectral line. Measurement of the intensity, fringe visibility and phase of the resulting interferogram leads to values for the emissivity, ion temperature and flow velocity. Using a multi-anode photomultiplier assembly, allows the time-resolved detection of all optical channels simultaneously.¶ The system has been fully calibrated, including a measurement of the spatial response of each line-of-sight. The calibration procedure accounts for the relative channel sensitivities, the response of the line filter and the removal of detector cross-talk. In situ light sources are installed provide routine and accurate relative intensity calibration of the system.¶ Methods of tomography provide the unfolding of the measured plasma parameters to construct two-dimensional images of ion temperature and emissivity. Methods of inversion include the iterative ART routine -- using projection data gathered with the light-collecting optics rotated to different viewing positions -- and linear composition of Fourier-Bessel basis functions -- with the data obtained from a single unrotated viewing position. ART reconstructions of the emissivity are performed without the need for a priori information while those of the ion temperature are computed using regularising functions to help stabilise the inversion.¶ This new system -- named ToMOSS for Tomographic Modulated Optical Solid-state Spectrometer -- enables a more detailed study of various plasma phenomena observed in H-1NF. Among other results, this thesis presents the first tomographic reconstructions of emissivity and temperature fluctuations associated with a large-scale coherent instability.
65

Assessment of Trace Gas Observations from the Toronto Atmospheric Observatory

Taylor, Jeffrey Ryan 26 February 2009 (has links)
A high-resolution infrared Fourier Transform Spectrometer (FTS) has been operational at the Toronto Atmospheric Observatory (TAO)since May 2002. An optimal estimation retrieval technique is used to analyse the observed spectra and provide regular total and partial column measurements of trace gases in the troposphere and stratosphere as part of the Network for the Detection of Atmospheric Composition Change. The quality of these results were assessed through two ground-based validation campaigns, comparisons with three satellite instruments, and comparison with a three-dimensional chemical transport model. The two ground-based campaigns involved two lower-resolution FTS instruments: the University of Toronto FTS and the Portable Atmospheric Research Interferometric Spectrometer for the Infrared. The first campaign took place over the course of four months and is the longest side-by-side intercomparison of ground-based FTS instruments, to date. The second campaign was more focused and involved all three instruments measuring over a two-week period. Simultaneous measurements of O3, HCl, N2O, and CH4 were recorded and average total column differences were all < 3.7% in the extended campaign, and < 4.5% in the focused campaign. Satellite-based comparisons were done with the SCanning and Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and the Optical Spectrograph and InfraRed Imager System (OSIRIS). Total column CO, CH4, and N2O compared with SCIAMACHY all had average differences < 10% with results from the TAO-FTS being as good as, or better, than that of other instruments. Validation with the ACE-FTS showed that average partial columns of O3, NO2, N2O, CH4, and HCl were within 10% while observations of CO and NO each had an average bias of about 25%. Comparisons of monthly average partial column O3 and NO2 with OSIRIS were highly correlated (R = 0.82-0.97) with monthly mean differences of < 3.1% for O3 and < 2.6% for NO2. Finally, comparisons with the GEOS-Chem chemical transport model revealed that the model consistently over-estimates tropospheric columns of CO and C2H6 observed at TAO. It was determined that the enhanced CO values were partially due to the North American emissions specified in the model, but more work must be done in the future if the source of this discrepancy is to be fully explained.
66

Assessment of Trace Gas Observations from the Toronto Atmospheric Observatory

Taylor, Jeffrey Ryan 26 February 2009 (has links)
A high-resolution infrared Fourier Transform Spectrometer (FTS) has been operational at the Toronto Atmospheric Observatory (TAO)since May 2002. An optimal estimation retrieval technique is used to analyse the observed spectra and provide regular total and partial column measurements of trace gases in the troposphere and stratosphere as part of the Network for the Detection of Atmospheric Composition Change. The quality of these results were assessed through two ground-based validation campaigns, comparisons with three satellite instruments, and comparison with a three-dimensional chemical transport model. The two ground-based campaigns involved two lower-resolution FTS instruments: the University of Toronto FTS and the Portable Atmospheric Research Interferometric Spectrometer for the Infrared. The first campaign took place over the course of four months and is the longest side-by-side intercomparison of ground-based FTS instruments, to date. The second campaign was more focused and involved all three instruments measuring over a two-week period. Simultaneous measurements of O3, HCl, N2O, and CH4 were recorded and average total column differences were all < 3.7% in the extended campaign, and < 4.5% in the focused campaign. Satellite-based comparisons were done with the SCanning and Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and the Optical Spectrograph and InfraRed Imager System (OSIRIS). Total column CO, CH4, and N2O compared with SCIAMACHY all had average differences < 10% with results from the TAO-FTS being as good as, or better, than that of other instruments. Validation with the ACE-FTS showed that average partial columns of O3, NO2, N2O, CH4, and HCl were within 10% while observations of CO and NO each had an average bias of about 25%. Comparisons of monthly average partial column O3 and NO2 with OSIRIS were highly correlated (R = 0.82-0.97) with monthly mean differences of < 3.1% for O3 and < 2.6% for NO2. Finally, comparisons with the GEOS-Chem chemical transport model revealed that the model consistently over-estimates tropospheric columns of CO and C2H6 observed at TAO. It was determined that the enhanced CO values were partially due to the North American emissions specified in the model, but more work must be done in the future if the source of this discrepancy is to be fully explained.
67

Ultra-compact holographic spectrometers for diffuse source spectroscopy

Hsieh, Chaoray 15 January 2008 (has links)
Compact and sensitive spectrometers are of high utility in biological and environmental sensing applications. Over the past half century, enormous research resources are dedicated in making the spectrometers more compact and sensitive. However, since all works are based on the same structure of the conventional spectrometers, the improvement on the performance is limited. Therefore, this ancient research filed still deserves further investigation, and a revolutionary idea is required to take the spectrometers to a whole new level. The research work presented in this thesis focuses on developing a new class of spectrometers that work based on diffractive properties of volume holograms. The hologram in these spectrometers acts as a spectral diversity filter, which maps different input wavelengths into different locations in the output plane. The experimental results show that properly designed volume holograms have excellent capability for separating different wavelength channels of a collimated incident beam. By adding a Fourier transforming lens behind the hologram, a slitless Fourier-transform volume holographic spectrometer is demonstrated, and it works well under diffuse light without using any spatial filter (i.e., slit) in the input. By further design of the hologram, a very compact slitless and lensless spectrometer is implemented for diffuse source spectroscopy by using only a volume hologram and a CCD camera. More sophisticated output patterns are also demonstrated using specially designed holograms to improve the performance of the holographic spectrometers. Finally, the performance of the holographic spectrometers is evaluated and the building of the holographic spectrometer prototype is also discussed.
68

Theoretical treatment of ion motion in an open trapped-ion cell for use in Fourier transform ion cyclotron resonance mass spectrometry

Arkin, C. Richard, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references. Available also in a digital version from Dissertation Abstracts.
69

Compositional analysis of complex organic mixtures by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry

Wu, Zhigang. Marshall, Alan G., January 2004 (has links)
Thesis (Ph. D.)--Florida State University, 2004. / Advisor: Dr. Alan G. Marshall, Florida State University, College of Arts and Sciences, Department of Chemistry and Biochemistry. Title and description from dissertation home page (viewed June 16, 2004). Includes bibliographical references.
70

Imaging Fourier transform spectroscopy from a space based platform : the Herschel/SPIRE Fourier transform spectrometer

Spencer, Locke Dean, University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
The Herschel Space Observatory (Herschel), a flagship mission of the European Space Agency (ESA), is comprised of three cryogenically cooled instruments commissioned to explore the far-infrared/submillimetre universe. Herschel's remote orbit at the second Lagrangian point (L2) of the Sun-Earth system, and its cryogenic payload, impose a need for thorough instrument characterization and rigorous testing as there will be no possibility for any servicing after launch. The Spectral and Photometric Imaging Receiver (SPIRE) is one of the instrument payloads aboard Herschel and consists of a three band imaging photometer and a two band imaging spectrometer. The imaging spectrometer on SPIRE consists of a Mach-Zehnder (MZ)-Fourier transform spectrometer (FTS) coupled with bolometric detector arrays to form an imaging FTS (IFTS). This thesis presents experiments conducted to verify the performance of an IFTS system from a space based platform, i.e. the use of the SPIRE IFTS within the Herschel space observatory. Prior to launch, the SPIRE instrument has undergone a series of performance verification tests conducted at the Rutherford Appleton Laboratory (RAL) near Oxford, UK. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. Through this thesis project I have been stationed at RAL for a period spanning fifteen months to participate in the development, performance verification, and characterization of both the SPIRE FTS and photometer instruments. This thesis discusses Fourier transform spectroscopy and related FTS data process ing (Chapter 2). Detailed discussions are included on the spectral phase related to the FTS beamsplitter (Chapter 3), the imaging aspects of the SPIRE IFTS instrument (Chapter 4), and the noise characteristics of the SPIRE bolometer detector arrays as measured using the SPIRE IFTS (Chapter 5). This thesis presents results from experiments performed both on site at the RAL Space Science and Technology Department (SSTD) Assembly Integration Verification (AIV) instrument test facility as well as from the Astronomical Instrumentation Group (AIG) research laboratories within the Department of Physics & Astronomy at the University of Lethbridge. / xxiii, 243 leaves : ill. (some col.) ; 29 cm

Page generated in 0.0764 seconds