• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 56
  • 19
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of self-similar traffic generation for ATM networks

Chen, Hung-Ming January 1997 (has links)
This thesis discusses the efficient and accurate generation of self-similar traffic for ATM networks. ATM networks have been developed to carry multiple service categories. Since the traffic on a number of existing networks is bursty, much research focuses on how to capture the characteristics of traffic to reduce the impact of burstiness. Conventional traffic models do not represent the characteristics of burstiness well, but self-similar traffic models provide a closer approximation. Self-similar traffic models have two fundamental properties, long-range dependence and infinite variance, which have been found in a large number of measurements of real traffic. Therefore, generation of self-similar traffic is vital for the accurate simulation of ATM networks. The main starting point for self-similar traffic generation is the production of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN). In this thesis six algorithms are brought together so that their efficiency and accuracy can be assessed. It is shown that the discrete FGN (dPGN) algorithm and the Weierstrass-Mandelbrot (WM) function are the best in terms of accuracy while the random midpoint displacement (RMD) algorithm, successive random addition (SRA) algorithm, and the WM function are superior in terms of efficiency. Three hybrid approaches are suggested to overcome the inefficiency or inaccuracy of the six algorithms. The combination of the dFGN and RMD algorithm was found to be the best in that it can generate accurate samples efficiently and on-the-fly. After generating FBM sample traces, a further transformation needs to be conducted with either the marginal distribution model or the storage model to produce self-similar traffic. The storage model is a better transformation because it provides a more rigorous mathematical derivation and interpretation of physical meaning. The suitability of using selected Hurst estimators, the rescaled adjusted range (R/S) statistic, the variance-time (VT) plot, and Whittle's approximate maximum likelihood estimator (MLE), is also covered. Whittle's MLE is the better estimator, the R/S statistic can only be used as a reference, and the VT plot might misrepresent the actual Hurst value. An improved method for the generation of self-similar traces and their conversion to traffic has been proposed. This, combined with the identification of reliable methods for the estimators of the Hurst parameter, significantly advances the use of self-similar traffic models in ATM network simulation.
2

Stock-Price Modeling by the Geometric Fractional Brownian Motion: A View towards the Chinese Financial Market

Feng, Zijie January 2018 (has links)
As an extension of the geometric Brownian motion, a geometric fractional Brownian motion (GFBM) is considered as a stock-price model. The modeled GFBM is compared with empirical Chinese stock prices. Comparisons are performed by considering logarithmic-return densities, autocovariance functions, spectral densities and trajectories. Since logarithmic-return densities of GFBM stock prices are Gaussian and empirical stock logarithmic-returns typically are far from Gaussian, a GFBM model may not be the most suitable stock price model.
3

On the Relevance of Fractional Gaussian Processes for Analysing Financial Markets

Al-Talibi, Haidar January 2007 (has links)
In recent years, the field of Fractional Brownian motion, Fractional Gaussian noise and long-range dependent processes has gained growing interest. Fractional Brownian motion is of great interest for example in telecommunications, hydrology and the generation of artificial landscapes. In fact, Fractional Brownian motion is a basic continuous process through which we show that it is neither a semimartingale nor a Markov process. In this work, we will focus on the path properties of Fractional Brownian motion and will try to check the absence of the property of a semimartingale. The concept of volatility will be dealt with in this work as a phenomenon in finance. Moreover, some statistical method like R/S analysis will be presented. By using these statistical tools we examine the volatility of shares and we demonstrate empirically that there are in fact shares which exhibit a fractal structure different from that of Brownian motion.
4

On the Relevance of Fractional Gaussian Processes for Analysing Financial Markets

Al-Talibi, Haidar January 2007 (has links)
<p>In recent years, the field of Fractional Brownian motion, Fractional Gaussian noise and long-range dependent processes has gained growing interest. Fractional Brownian motion is of great interest for example in telecommunications, hydrology and the generation of artificial landscapes. In fact, Fractional Brownian motion is a basic continuous process through which we show that it is neither a semimartingale nor a Markov process. In this work, we will focus on the path properties of Fractional Brownian motion and will try to check the absence of the property of a semimartingale. The concept of volatility will be dealt with in this work as a phenomenon in finance. Moreover, some statistical method like R/S analysis will be presented. By using these statistical tools we examine the volatility of shares and we demonstrate empirically that there are in fact shares which exhibit a fractal structure different from that of Brownian motion.</p>
5

The Hurst parameter and option pricing with fractional Brownian motion

Ostaszewicz, Anna Julia 01 February 2013 (has links)
In the mathematical modeling of the classical option pricing models it is assumed that the underlying stock price process follows a geometric Brownian motion, but through statistical analysis persistency was found in the log-returns of some South African stocks and Brownian motion does not have persistency. We suggest the replacement of Brownian motion with fractional Brownian motion which is a Gaussian process that depends on the Hurst parameter that allows for the modeling of autocorrelation in price returns. Three fractional Black-Scholes (Black) models were investigated where the underlying is assumed to follow a fractional Brownian motion. Using South African options on futures and warrant prices these models were compared to the classical models. / Dissertation (MSc)--University of Pretoria, 2012. / Mathematics and Applied Mathematics / unrestricted
6

Analyse statistique de quelques modèles de processus de type fractionnaire / Statistical analysis of some models of fractional type process

Cai, Chunhao 18 April 2014 (has links)
Cette thèse porte sur l’analyse statistique de quelques modèles de processus stochastiques gouvernés par des bruits de type fractionnaire, en temps discret ou continu.Dans le Chapitre 1, nous étudions le problème d’estimation par maximum de vraisemblance (EMV) des paramètres d’un processus autorégressif d’ordre p (AR(p)) dirigé par un bruit gaussien stationnaire, qui peut être à longue mémoire commele bruit gaussien fractionnaire. Nous donnons une formule explicite pour l’EMV et nous analysons ses propriétés asymptotiques. En fait, dans notre modèle la fonction de covariance du bruit est supposée connue, mais le comportement asymptotique de l’estimateur (vitesse de convergence, information de Fisher) n’en dépend pas.Le Chapitre 2 est consacré à la détermination de l’entrée optimale (d’un point de vue asymptotique) pour l’estimation du paramètre de dérive dans un processus d’Ornstein-Uhlenbeck fractionnaire partiellement observé mais contrôlé. Nous exposons un principe de séparation qui nous permet d’atteindre cet objectif. Les propriétés asymptotiques de l’EMV sont démontrées en utilisant le programme d’Ibragimov-Khasminskii et le calcul de transformées de Laplace d’une fonctionnellequadratique du processus.Dans le Chapitre 3, nous présentons une nouvelle approche pour étudier les propriétés du mouvement brownien fractionnaire mélangé et de modèles connexes, basée sur la théorie du filtrage des processus gaussiens. Les résultats mettent en lumière la structure de semimartingale et mènent à un certain nombre de propriétés d’absolue continuité utiles. Nous établissons l’équivalence des mesures induites par le mouvement brownien fractionnaire mélangé avec une dérive stochastique, et en déduisons l’expression correspondante de la dérivée de Radon-Nikodym. Pour un indice de Hurst H > 3=4, nous obtenons une représentation du mouvement brownien fractionnaire mélangé comme processus de type diffusion dans sa filtration naturelle et en déduisons une formule de la dérivée de Radon-Nikodym par rapport à la mesurede Wiener. Pour H < 1=4, nous montrons l’équivalence de la mesure avec celle la composante fractionnaire et obtenons une formule pour la densité correspondante. Un domaine d’application potentielle est l’analyse statistique des modèles gouvernés par des bruits fractionnaires mélangés. A titre d’exemple, nous considérons le modèle de régression linéaire de base et montrons comment définir l’EMV et étudié son comportement asymptotique. / This thesis focuses on the statistical analysis of some models of stochastic processes generated by fractional noise in discrete or continuous time.In Chapter 1, we study the problem of parameter estimation by maximum likelihood (MLE) for an autoregressive process of order p (AR (p)) generated by a stationary Gaussian noise, which can have long memory as the fractional Gaussiannoise. We exhibit an explicit formula for the MLE and we analyze its asymptotic properties. Actually in our model the covariance function of the noise is assumed to be known but the asymptotic behavior of the estimator ( rate of convergence, Fisher information) does not depend on it.Chapter 2 is devoted to the determination of the asymptotical optimal input for the estimation of the drift parameter in a partially observed but controlled fractional Ornstein-Uhlenbeck process. We expose a separation principle that allows us toreach this goal. Large sample asymptotical properties of the MLE are deduced using the Ibragimov-Khasminskii program and Laplace transform computations for quadratic functionals of the process.In Chapter 3, we present a new approach to study the properties of mixed fractional Brownian motion (fBm) and related models, based on the filtering theory of Gaussian processes. The results shed light on the semimartingale structure andproperties lead to a number of useful absolute continuity relations. We establish equivalence of the measures, induced by the mixed fBm with stochastic drifts, and derive the corresponding expression for the Radon-Nikodym derivative. For theHurst index H > 3=4 we obtain a representation of the mixed fBm as a diffusion type process in its own filtration and derive a formula for the Radon-Nikodym derivative with respect to the Wiener measure. For H < 1=4, we prove equivalenceto the fractional component and obtain a formula for the corresponding derivative. An area of potential applications is statistical analysis of models, driven by mixed fractional noises. As an example we consider only the basic linear regression setting and show how the MLE can be defined and studied in the large sample asymptotic regime.
7

Fractional Brownian motion and dynamic approach to complexity.

Cakir, Rasit 08 1900 (has links)
The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power law with index m=1.5. However, with theoretical and numerical arguments, it is proved that this is the special case of a more general condition, insofar as the recrossing times produced by the dynamic FBM generates process with m=2-H. Later, the model of ballistic deposition is studied, which is as a simple way to establish cooperation among the columns of a growing surface, to show that cooperation generates memory properties and, at same time, non-Poisson renewal events. Finally, the connection between trajectory and density memory is discussed, showing that the trajectory memory does not necessarily yields density memory, and density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory.
8

Experimentation on dynamic congestion control in Software Defined Networking (SDN) and Network Function Virtualisation (NFV)

Kamaruddin, Amalina Farhan January 2017 (has links)
In this thesis, a novel framework for dynamic congestion control has been proposed. The study is about the congestion control in broadband communication networks. Congestion results when demand temporarily exceeds capacity and leads to severe degradation of Quality of Service (QoS) and possibly loss of traffic. Since traffic is stochastic in nature, high demand may arise anywhere in a network and possibly causing congestion. There are different ways to mitigate the effects of congestion, by rerouting, by aggregation to take advantage of statistical multiplexing, and by discarding too demanding traffic, which is known as admission control. This thesis will try to accommodate as much traffic as possible, and study the effect of routing and aggregation on a rather general mix of traffic types. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are concepts that allow for dynamic configuration of network resources by decoupling control from payload data and allocation of network functions to the most suitable physical node. This allows implementation of a centralised control that takes the state of the entire network into account and configures nodes dynamically to avoid congestion. Assumes that node controls can be expressed in commands supported by OpenFlow v1.3. Due to state dependencies in space and time, the network dynamics are very complex, and resort to a simulation approach. The load in the network depends on many factors, such as traffic characteristics and the traffic matrix, topology and node capacities. To be able to study the impact of control functions, some parts of the environment is fixed, such as the topology and the node capacities, and statistically average the traffic distribution in the network by randomly generated traffic matrices. The traffic consists of approximately equal intensity of smooth, bursty and long memory traffic. By designing an algorithm that route traffic and configure queue resources so that delay is minimised, this thesis chooses the delay to be the optimisation parameter because it is additive and real-time applications are delay sensitive. The optimisation being studied both with respect to total end-to-end delay and maximum end-to-end delay. The delay is used as link weights and paths are determined by Dijkstra's algorithm. Furthermore, nodes are configured to serve the traffic optimally which in turn depends on the routing. The proposed algorithm is a fixed-point system of equations that iteratively evaluates routing - aggregation - delay until an equilibrium point is found. Three strategies are compared: static node configuration where each queue is allocated 1/3 of the node resources and no aggregation, aggregation of real-time (taken as smooth and bursty) traffic onto the same queue, and dynamic aggregation based on the entropy of the traffic streams and their aggregates. The results of the simulation study show good results, with gains of 10-40% in the QoS parameters. By simulation, the positive effects of the proposed routing and aggregation strategy and the usefulness of the algorithm. The proposed algorithm constitutes the central control logic, and the resulting control actions are realisable through the SDN/NFV architecture.
9

Topics on fractional Brownian motion and regular variation for stochastic processes

Hult, Henrik January 2003 (has links)
The first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the probability distributions satisfy a regularvariation condition. This means, roughly speaking, that thereis a non-negligible probability for very large or extremeoutcomes to occur. Such models are useful in applicationsincluding insurance, finance and telecommunications networks.It is shown how regular variation of the marginals, or theincrements, of a stochastic process implies regular variationof functionals of the process. Moreover, the associated tailbehavior in terms of a limit measure is derived. The second part of the thesis studies problems related toparameter estimation in stochastic models with long memory.Emphasis is on the estimation of the drift parameter in somestochastic differential equations driven by the fractionalBrownian motion or more generally Volterra-type processes.Observing the process continuously, the maximum likelihoodestimator is derived using a Girsanov transformation. In thecase of discrete observations the study is carried out for theparticular case of the fractional Ornstein-Uhlenbeck process.For this model Whittle’s approach is applied to derive anestimator for all unknown parameters.
10

A Study on the Embedded Branching Process of a Self-similar Process

Chu, Fang-yu 25 August 2010 (has links)
In this paper, we focus on the goodness of fit test for self-similar property of two well-known processes: the fractional Brownian motion and the fractional autoregressive integrated moving average process. The Hurst parameter of the self-similar process is estimated by the embedding branching process method proposed by Jones and Shen (2004). The goodness of fit test for self-similarity is based on the Pearson chi-square test statistic. We approximate the null distribution of the test statistic by a scaled chi-square distribution to correct the size bias problem of the conventional chi-square distribution. The scale parameter and degrees of freedom of the test statistic are determined via regression method. Simulations are performed to show the finite sample size and power of the proposed test. Empirical applications are conducted for the high frequency financial data and human heart rate data.

Page generated in 0.141 seconds