• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Relevance of Fractional Gaussian Processes for Analysing Financial Markets

Al-Talibi, Haidar January 2007 (has links)
In recent years, the field of Fractional Brownian motion, Fractional Gaussian noise and long-range dependent processes has gained growing interest. Fractional Brownian motion is of great interest for example in telecommunications, hydrology and the generation of artificial landscapes. In fact, Fractional Brownian motion is a basic continuous process through which we show that it is neither a semimartingale nor a Markov process. In this work, we will focus on the path properties of Fractional Brownian motion and will try to check the absence of the property of a semimartingale. The concept of volatility will be dealt with in this work as a phenomenon in finance. Moreover, some statistical method like R/S analysis will be presented. By using these statistical tools we examine the volatility of shares and we demonstrate empirically that there are in fact shares which exhibit a fractal structure different from that of Brownian motion.
2

On the Relevance of Fractional Gaussian Processes for Analysing Financial Markets

Al-Talibi, Haidar January 2007 (has links)
<p>In recent years, the field of Fractional Brownian motion, Fractional Gaussian noise and long-range dependent processes has gained growing interest. Fractional Brownian motion is of great interest for example in telecommunications, hydrology and the generation of artificial landscapes. In fact, Fractional Brownian motion is a basic continuous process through which we show that it is neither a semimartingale nor a Markov process. In this work, we will focus on the path properties of Fractional Brownian motion and will try to check the absence of the property of a semimartingale. The concept of volatility will be dealt with in this work as a phenomenon in finance. Moreover, some statistical method like R/S analysis will be presented. By using these statistical tools we examine the volatility of shares and we demonstrate empirically that there are in fact shares which exhibit a fractal structure different from that of Brownian motion.</p>
3

Stock-Price Modeling by the Geometric Fractional Brownian Motion: A View towards the Chinese Financial Market

Feng, Zijie January 2018 (has links)
As an extension of the geometric Brownian motion, a geometric fractional Brownian motion (GFBM) is considered as a stock-price model. The modeled GFBM is compared with empirical Chinese stock prices. Comparisons are performed by considering logarithmic-return densities, autocovariance functions, spectral densities and trajectories. Since logarithmic-return densities of GFBM stock prices are Gaussian and empirical stock logarithmic-returns typically are far from Gaussian, a GFBM model may not be the most suitable stock price model.
4

Long range dependence v časových řadách / Long range dependence in time series

Till, Alexander January 2014 (has links)
Title: Long range dependence in time series Author: Alexander Till Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D. Abstract: The diploma thesis demonstrates the necessity of a study of long range dependence, introduces fractional Gaussian noise and discusses possible definitions of long memory. It is done by notions of ergodic theory and by second moment characteristics and spectral density. These definitions are confronted with the model of fractional Gaussian noise and with intuitive understanding of long range memory. Relations and connections between these criteria are studied as well. The work is restricted to the study of discrete time processes. 1
5

Long range dependence v časových řadách / Long range dependence in time series

Till, Alexander January 2016 (has links)
Title: Long range dependence in time series Author: Alexander Till Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D. Abstract: The diploma thesis demonstrates the necessity of a study of long range dependence, introduces fractional Gaussian noise and discusses possi- ble definitions of long memory. It is done by notions of ergodic theory and by second moment characteristics and spectral density. These definitions are confronted with the model of fractional Gaussian noise and with intuitive un- derstanding of long range memory. Relations and connections between these criteria are studied as well. The work is restricted to the study of discrete time processes. Method for Hurst index estimation for fractional Gaussian noise and it's application on logarithmic returns of shares of selected produ- cers of beer are included in this work. 1
6

Bayesian estimation of self-similarity exponent

Makarava, Natallia January 2012 (has links)
Estimation of the self-similarity exponent has attracted growing interest in recent decades and became a research subject in various fields and disciplines. Real-world data exhibiting self-similar behavior and/or parametrized by self-similarity exponent (in particular Hurst exponent) have been collected in different fields ranging from finance and human sciencies to hydrologic and traffic networks. Such rich classes of possible applications obligates researchers to investigate qualitatively new methods for estimation of the self-similarity exponent as well as identification of long-range dependencies (or long memory). In this thesis I present the Bayesian estimation of the Hurst exponent. In contrast to previous methods, the Bayesian approach allows the possibility to calculate the point estimator and confidence intervals at the same time, bringing significant advantages in data-analysis as discussed in this thesis. Moreover, it is also applicable to short data and unevenly sampled data, thus broadening the range of systems where the estimation of the Hurst exponent is possible. Taking into account that one of the substantial classes of great interest in modeling is the class of Gaussian self-similar processes, this thesis considers the realizations of the processes of fractional Brownian motion and fractional Gaussian noise. Additionally, applications to real-world data, such as the data of water level of the Nile River and fixational eye movements are also discussed. / Die Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-zehnten an Aufmerksamkeit gewonnen und ist in vielen wissenschaftlichen Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden. Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähnlichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwissenschaften über Humanwissenschaften bis zu Netzwerken in der Hydrologie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendungen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähnlichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erkennen. In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herangehensweise die Berechnung von Punktschätzungen zusammen mit Konfidenzintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in der Arbeit diskutiert wird. Zudem ist diese Methode anwendbar auf kurze und unregelmäßig verteilte Datensätze, wodurch die Auswahl der möglichen Anwendung, wo der Hurst-Exponent geschätzt werden soll, stark erweitert wird. Unter Berücksichtigung der Tatsache, dass der Gauß'sche selbstähnliche Prozess von bedeutender Interesse in der Modellierung ist, werden in dieser Arbeit Realisierungen der Prozesse der fraktionalen Brown'schen Bewegung und des fraktionalen Gauß'schen Rauschens untersucht. Zusätzlich werden Anwendungen auf reelle Daten, wie Wasserstände des Nil und fixierte Augenbewegungen, diskutiert.
7

Stochastické evoluční systémy a jejich aplikace / Stochastic Evolution Systems and Their Applications

Rubín, Tomáš January 2016 (has links)
In the Thesis, linear stochastic differential equations in a Hilbert space driven by a cylindrical fractional Brownian motion with the Hurst parameter in the interval H < 1/2 are considered. Under the conditions on the range of the diffusion coefficient, existence of the mild solution is proved together with measurability and continuity. Existence of a limiting distribution is shown for exponentially stable semigroups. The theory is modified for the case of analytical semigroups. In this case, the conditions for the diffusion coefficient are weakened. The scope of the theory is illustrated on the Heath-Jarrow-Morton model, the wave equation, and the heat equation. 1
8

Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles / Contribution to the wavelet theory : Application to edge plasma turbulence in tokamaks and to dimensional measurement of targets

Scipioni, Angel 19 November 2010 (has links)
La nécessaire représentation en échelle du monde nous amène à expliquer pourquoi la théorie des ondelettes en constitue le formalisme le mieux adapté. Ses performances sont comparées à d'autres outils : la méthode des étendues normalisées (R/S) et la méthode par décomposition empirique modale (EMD).La grande diversité des bases analysantes de la théorie des ondelettes nous conduit à proposer une approche à caractère morphologique de l'analyse. L'exposé est organisé en trois parties.Le premier chapitre est dédié aux éléments constitutifs de la théorie des ondelettes. Un lien surprenant est établi entre la notion de récurrence et l'analyse en échelle (polynômes de Daubechies) via le triangle de Pascal. Une expression analytique générale des coefficients des filtres de Daubechies à partir des racines des polynômes est ensuite proposée.Le deuxième chapitre constitue le premier domaine d'application. Il concerne les plasmas de bord des réacteurs de fusion de type tokamak. Nous exposons comment, pour la première fois sur des signaux expérimentaux, le coefficient de Hurst a pu être mesuré à partir d'un estimateur des moindres carrés à ondelettes. Nous détaillons ensuite, à partir de processus de type mouvement brownien fractionnaire (fBm), la manière dont nous avons établi un modèle (de synthèse) original reproduisant parfaitement la statistique mixte fBm et fGn qui caractérise un plasma de bord. Enfin, nous explicitons les raisons nous ayant amené à constater l'absence de lien existant entre des valeurs élevées du coefficient d'Hurst et de supposées longues corrélations.Le troisième chapitre est relatif au second domaine d'application. Il a été l'occasion de mettre en évidence comment le bien-fondé d'une approche morphologique couplée à une analyse en échelle nous ont permis d'extraire l'information relative à la taille, dans un écho rétrodiffusé d'une cible immergée et insonifiée par une onde ultrasonore / The necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information

Page generated in 0.0782 seconds