• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traitement et analyse des processus stochastiques par EMD et ses extensions / No

Komaty, Ali 28 November 2014 (has links)
L’objectif de cette thèse est d’analyser le comportement de la décomposition modale empirique (EMD) et sa version multivariée (MEMD) dans le cas de processus stochastiques : bruit Gaussien fractionnaire (fGn) et processus symétrique alpha stable (SαS). Le fGn est un bruit large bande généralisant le cas du bruit blanc Gaussien et qui trouve des applications dans de nombreux domaines tels que le trafic internet, l’économie ou le climat. Par ailleurs, la nature «impulsive» d’un certain nombre de signaux (craquement des glaces, bruit des crevettes claqueuses, potentiel de champ local en neurosciences,…) est indéniable et le modèle Gaussien ne convient pas pour leur modélisation. La distribution SαS est une solution pour modéliser cette classe de signaux non-Gaussiens. L’EMD est un outil bien adapté au traitement et à l’analyse de ces signaux réels qui sont, en général, de nature complexe (non stationnaire,non linéaire). En effet, cette technique, pilotée par les données, permet la décomposition d’un signal en une somme réduite de composantes oscillantes, extraites de manière itérative, appelées modes empiriques ou IMFs (Intrinsic Mode Functions). Ainsi, nous avons montré que le MEMD s’organise spontanément en une structure de banc de filtres presque dyadiques. L'auto-similarité en termes de représentation spectrale des modes a aussi été établie. En outre, un estimateur de l’exposant de Hurst, caractérisant le fGn, a été construit et ses performances ont été comparées, en particulier à celles de l’approche ondelettes. Cette propriété de banc de filtres du MEMD a été vérifiée sur des données d'hydrodynamique navale (écoulement turbulent) et leur auto-similarité a été mise en évidence. De plus, l’estimation du coefficient de Hurst a mis en avant l’aspect longue dépendance (corrélation positive) des données. Enfin, l’aspect banc de filtres de l’EMD a été exploité à des fins de filtrage dans le domaine temporel en utilisant une mesure de similarité entre les densités de probabilités des modes extraits et celle du signal d’entrée. Pour éviter le problème du mode mixing de l'EMD standard, une approche de débruitage dans le domaine fréquentiel par une reconstruction complète des IMFs préalablement seuillées a été menée. L’ensemble des résultats a été validé par des simulations intensives (Monte Carlo) et sur des signaux réels. / The main contribution of this thesis is aimed towards understanding the behaviour of the empirical modes decomposition (EMD) and its extended versions in stochastic situations.
2

Modélisation et détection de ruptures des signaux physiologiques issus de compétitions d'endurance

Kammoun, Imen 19 December 2007 (has links) (PDF)
Ce travail de thèse porte sur la modélisation et l'estimation de paramètres pertinents pour les signaux de fréquences cardiaques (FC) instantanées. Nous nous intéressons à un paramètre (appelé grossièrement "fractal"), qui témoigne de la régularité locale de la trajectoire et de la dépendance entre les données. Les propriétés asymptotiques de la fonction DFA (Detrended Fluctuation Analysis) et de l'estimateur de H sont étudiées pour le bruit gaussien fractionnaire (FGN) et plus généralement pour une classe semi-paramétrique de processus stationnaires à longue mémoire avec ou sans tendance. On montre que cette méthode n'est pas robuste. On propose la modélisation des séries de FC par une généralisation du FGN, appelée bruit gaussien localement fractionnaire. Un tel processus stationnaire est construit à partir du paramètre dit de fractalité locale (une sorte de paramètre de Hurst avec des valeurs dans IR) sur une bande de fréquences. L'estimation du paramètre est faite par une analyse par ondelettes, tout comme le test d'adéquation. On montre la pertinence du modèle et une évolution du paramètre pendant la course. Une détection des changements de ce paramètre pourrait être extrêmement appropriée. On propose alors une méthode de détection de multiples ruptures du paramètre de longue mémoire (respectivement d'autosimilarité, de fractalité locale). Un estimateur des points de changements est construit, il vérifie un théorème limite. Un théorème de la limite centrale est établi pour l'estimateur des paramètres et un test d'ajustement est mis en place dans chaque zone où le paramètre est inchangé. Enfin, on montre la même évolution du paramètre de fractalité locale sur les FC.
3

Contribution à la théorie des ondelettes : application à la turbulence des plasmas de bord de Tokamak et à la mesure dimensionnelle de cibles / Contribution to the wavelet theory : Application to edge plasma turbulence in tokamaks and to dimensional measurement of targets

Scipioni, Angel 19 November 2010 (has links)
La nécessaire représentation en échelle du monde nous amène à expliquer pourquoi la théorie des ondelettes en constitue le formalisme le mieux adapté. Ses performances sont comparées à d'autres outils : la méthode des étendues normalisées (R/S) et la méthode par décomposition empirique modale (EMD).La grande diversité des bases analysantes de la théorie des ondelettes nous conduit à proposer une approche à caractère morphologique de l'analyse. L'exposé est organisé en trois parties.Le premier chapitre est dédié aux éléments constitutifs de la théorie des ondelettes. Un lien surprenant est établi entre la notion de récurrence et l'analyse en échelle (polynômes de Daubechies) via le triangle de Pascal. Une expression analytique générale des coefficients des filtres de Daubechies à partir des racines des polynômes est ensuite proposée.Le deuxième chapitre constitue le premier domaine d'application. Il concerne les plasmas de bord des réacteurs de fusion de type tokamak. Nous exposons comment, pour la première fois sur des signaux expérimentaux, le coefficient de Hurst a pu être mesuré à partir d'un estimateur des moindres carrés à ondelettes. Nous détaillons ensuite, à partir de processus de type mouvement brownien fractionnaire (fBm), la manière dont nous avons établi un modèle (de synthèse) original reproduisant parfaitement la statistique mixte fBm et fGn qui caractérise un plasma de bord. Enfin, nous explicitons les raisons nous ayant amené à constater l'absence de lien existant entre des valeurs élevées du coefficient d'Hurst et de supposées longues corrélations.Le troisième chapitre est relatif au second domaine d'application. Il a été l'occasion de mettre en évidence comment le bien-fondé d'une approche morphologique couplée à une analyse en échelle nous ont permis d'extraire l'information relative à la taille, dans un écho rétrodiffusé d'une cible immergée et insonifiée par une onde ultrasonore / The necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information

Page generated in 0.0896 seconds