• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • Tagged with
  • 27
  • 27
  • 27
  • 11
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur des nouvelles formules d'Itô en loi / On a new Itô-type formula in law

Zeineddine, Raghid 01 December 2014 (has links)
Le mouvement brownien fractionnaire en temps brownien Z est un processus qui sert de modèle à la diffusion d’un gaz le long d’une fissure. Dans cette thèse, réalisée sous la direction d'Ivan Nourdin, nous prouvons des formules de type Itô pour Z. Nos principaux outils sont le calcul de Malliavin, le calcul stochastique et l'utilisation de théorèmes limites. Une des spécificités des formules de changement de variables que nous avons obtenues est qu’elles ont lieu en loi, avec création d'un nouvel aléa. Ce mémoire est constitué d'un chapitre introductif, suivi de trois autres chapitres qui correspondent chacun à différents résultats obtenus lors de la préparation de cette thèse et rédigés sous forme d'articles de recherche. Plus précisément : 1) Dans un premier article, nous introduisons le processus central de cette thèse, à savoir le mouvement brownien fractionnaire en temps brownien Z. Nous étudions ensuite les fluctuations de ses variations d’ordre p, où p est n'importe quel entier supérieur ou égal à 1. 2) Dans un deuxième article, avec mon encadrant Ivan Nourdin nous avons utilisé les résultats du premier article pour construire une formule de type Itô pour Z. Pour ce faire, nous avons étendu à notre cadre une idée due originellement à Khoshnevisan et Lewis, consistant à travailler avec une partition aléatoire du temps au lieu de la partition déterministe classique. 3) Enfin, dans un troisième et dernier article, nous avons prolongé la formule unidimensionnelle décrite en 2) au cadre bidimensionnel / Fractional Brownian motion in Brownian time Z may serve as a model for the motion of a single gas particle constrained to evolve inside a crack. In this PhD thesis, written under the supervision of Ivan Nourdin, we prove Itô's type formulas for Z. To achieve this goal, our main tools are the Malliavin calculus, the stochastic calculus and the use of limit theorems. One of the specificity of the formula we have obtained is that they hold in law, with creation of a new alea. This manuscript consists in an introductory chapter, followed by three other chapters, each one corresponding to different results obtained along the preparation of this thesis and written is the form of research papers. More precisely: 1) In a first paper, we introduce the central process of this thesis, namely the fractional Brownian motion in Brownian time Z. Then, we study the fluctuations of its power variations of order p, for any integer p greater than or equal to 1. 2) In a second paper, written jointly with my supervisor Ivan Nourdin, we use the results obtained in 1) to build an Itô's type formula for Z. To do so, we need to extend to our setting an approach originally due to Khoshnevisan and Lewis, consisting in rather working with a random partition of time, instead of the classical uniform deterministic partition. 3) Finally, in a third and last paper, we extend to bi-dimension the one- dimensional formula obtained in 2)
2

Analyse statistique de quelques modèles de processus de type fractionnaire / Statistical analysis of some models of fractional type process

Cai, Chunhao 18 April 2014 (has links)
Cette thèse porte sur l’analyse statistique de quelques modèles de processus stochastiques gouvernés par des bruits de type fractionnaire, en temps discret ou continu.Dans le Chapitre 1, nous étudions le problème d’estimation par maximum de vraisemblance (EMV) des paramètres d’un processus autorégressif d’ordre p (AR(p)) dirigé par un bruit gaussien stationnaire, qui peut être à longue mémoire commele bruit gaussien fractionnaire. Nous donnons une formule explicite pour l’EMV et nous analysons ses propriétés asymptotiques. En fait, dans notre modèle la fonction de covariance du bruit est supposée connue, mais le comportement asymptotique de l’estimateur (vitesse de convergence, information de Fisher) n’en dépend pas.Le Chapitre 2 est consacré à la détermination de l’entrée optimale (d’un point de vue asymptotique) pour l’estimation du paramètre de dérive dans un processus d’Ornstein-Uhlenbeck fractionnaire partiellement observé mais contrôlé. Nous exposons un principe de séparation qui nous permet d’atteindre cet objectif. Les propriétés asymptotiques de l’EMV sont démontrées en utilisant le programme d’Ibragimov-Khasminskii et le calcul de transformées de Laplace d’une fonctionnellequadratique du processus.Dans le Chapitre 3, nous présentons une nouvelle approche pour étudier les propriétés du mouvement brownien fractionnaire mélangé et de modèles connexes, basée sur la théorie du filtrage des processus gaussiens. Les résultats mettent en lumière la structure de semimartingale et mènent à un certain nombre de propriétés d’absolue continuité utiles. Nous établissons l’équivalence des mesures induites par le mouvement brownien fractionnaire mélangé avec une dérive stochastique, et en déduisons l’expression correspondante de la dérivée de Radon-Nikodym. Pour un indice de Hurst H > 3=4, nous obtenons une représentation du mouvement brownien fractionnaire mélangé comme processus de type diffusion dans sa filtration naturelle et en déduisons une formule de la dérivée de Radon-Nikodym par rapport à la mesurede Wiener. Pour H < 1=4, nous montrons l’équivalence de la mesure avec celle la composante fractionnaire et obtenons une formule pour la densité correspondante. Un domaine d’application potentielle est l’analyse statistique des modèles gouvernés par des bruits fractionnaires mélangés. A titre d’exemple, nous considérons le modèle de régression linéaire de base et montrons comment définir l’EMV et étudié son comportement asymptotique. / This thesis focuses on the statistical analysis of some models of stochastic processes generated by fractional noise in discrete or continuous time.In Chapter 1, we study the problem of parameter estimation by maximum likelihood (MLE) for an autoregressive process of order p (AR (p)) generated by a stationary Gaussian noise, which can have long memory as the fractional Gaussiannoise. We exhibit an explicit formula for the MLE and we analyze its asymptotic properties. Actually in our model the covariance function of the noise is assumed to be known but the asymptotic behavior of the estimator ( rate of convergence, Fisher information) does not depend on it.Chapter 2 is devoted to the determination of the asymptotical optimal input for the estimation of the drift parameter in a partially observed but controlled fractional Ornstein-Uhlenbeck process. We expose a separation principle that allows us toreach this goal. Large sample asymptotical properties of the MLE are deduced using the Ibragimov-Khasminskii program and Laplace transform computations for quadratic functionals of the process.In Chapter 3, we present a new approach to study the properties of mixed fractional Brownian motion (fBm) and related models, based on the filtering theory of Gaussian processes. The results shed light on the semimartingale structure andproperties lead to a number of useful absolute continuity relations. We establish equivalence of the measures, induced by the mixed fBm with stochastic drifts, and derive the corresponding expression for the Radon-Nikodym derivative. For theHurst index H > 3=4 we obtain a representation of the mixed fBm as a diffusion type process in its own filtration and derive a formula for the Radon-Nikodym derivative with respect to the Wiener measure. For H < 1=4, we prove equivalenceto the fractional component and obtain a formula for the corresponding derivative. An area of potential applications is statistical analysis of models, driven by mixed fractional noises. As an example we consider only the basic linear regression setting and show how the MLE can be defined and studied in the large sample asymptotic regime.
3

Etude de systèmes différentiels fractionnaires / On some fractional differential systems

Deya, Aurélien 18 October 2010 (has links)
Ce mémoire de thèse est consacré à l’interprétation et la résolution de différents types de systèmes différentiels, fini ou infini-dimensionnels, dirigés par un processus höldérien. La stratégie mise en œuvre consiste en une adaptation de la théorie des trajectoires rugueuses pour les équations différentielles ordinaires. Sont plus particulièrement considérés le cas de l’équation de Volterra et le cas de l’équation de la chaleur. Le mémoire fait en outre apparaître une réflexion systématique sur les retombées de cette approche en termes d’interprétation de systèmes stochastiques, avec une attention particulière portée au cas du mouvement Brownien fractionnaire. Il propose enfin une analyse détaillée de plusieurs schémas d’approximation numérique des solutions. / This PhD thesis work is devoted to the study of some finite and infinite-dimensional differential systems driven by Hölder processes. The general strategy consists in adapting the rough paths methods, originally designed to handle standard systems only. More specifically, we consider the case of the Volterra systems, as well as the case of heat equations. This work also focuses on the spin-offs of the rough paths approach as far as stochastic systems are concerned, with a special attention to the fractional Brownian motion. Finally, a detailed analysis of several approximation schemes for the solutions is provided
4

Sur différents problèmes de convergence en loi dans l'espace de Wiener / On different problems of convergence in law in the Wiener space

Zintout, Rola 24 September 2015 (has links)
La thèse porte sur l'approximation probabiliste dans un contexte fractionnaire, c'est-a-dire dans des modèles reliés d'une manière ou d'une autre au mouvement brownien fractionnaire. Le dénominateur commun de nos résultats est qu'ils proposent des conditions générales sous lesquelles une variable aléatoire de loi compliquée converge, en loi, vers une variable aléatoire de loi plus aisée. Et quand cela a été possible, nous avons aussi cherché à associer des vitesses de convergence. Les outils utilisés sont reliés a un domaine de recherche récent, appelé approche de Malliavin-Stein. En 2005, Nualart et Peccati ont découvert un théorème limite surprenant (qui porte aujourd'hui le nom de théorème du moment quatrième) pour les suites d'intégrales multiples de Wiener-Itô: pour de telles suites et après renormalisation, la convergence en loi vers la gaussienne standard se trouve être équivalente à la convergence du seul moment quatrième. Peu de temps après la publication de ce joli résultat, Peccati et Tudor l'ont étendu au cadre multivarié. Et, depuis, de nombreuses améliorations et nouveaux développements sont apparus dans la littérature, notamment un article de Nourdin et Peccati qui, pour la première fois, a combiné la méthode de Stein avec le calcul de Malliavin, offrant ainsi un cadre dans lequel il est maintenant possible d'associer une vitesse de convergence au théorème du moment quatrième. Nous nous intéressons dans cette thèse à la distance en variation totale entre les lois de deux intégrales doubles de Wiener-Itô. Nous améliorons des résultats antérieurs dus à Davydov et Martinova . Puis on étudie le comportement asymptotique des variations croisées d'un processus bidimensionnel ayant la forme d'une intégrale de Young. Finalement, on établit la convergence multivariée de certains processus de Volterra construits à partir du mouvement brownien fractionnaire. / The thesis deals with the probabilistic approximation in a fractional context, which means in models connected in one way or another to the fractional Brownian motion. The common denominator of our results is that they offer general conditions under which a random variable having a complicated law converges in law to a random variable with easier law. And when this was possible, we have also associated convergence rates. The tools are linked to a recent research field, called Malliavin-Stein approach. In 2005, Nualart and Peccati have discovered a surprising limit theorem (known as the fourth moment theorem) for series of multiple Wiener-Itô integrals: for such series and after renormalization, convergence in distribution to standard Gaussian happens to be equivalent to the convergence of the fourth moment only. Shortly after the publication of this nice result, Peccati and Tudor have extended it to the multivariate case. And since many improvements and new developments have appeared in the literature, including an article by Nourdin and Peccati which for the first time combined the method of Stein with the Malliavin calculus, providing a framework in which it is now possible to associate a rate of convergence to the fourth moment theorem. We focus in this thesis on the total variation distance between the laws of two double Wiener-Itô integrals. We improve a previous result of Davydov and Martinova. Then we study the asymptotic behavior of a two-dimensional cross-variation process that has the form of a Young integral. Finally, a multivariate convergence is established of some Volterra processes built from the fractional Brownian motion.
5

Construction et étude de quelques processus multifractals / Construction and study of some multifractal processes

Perpète, Nicolas 19 February 2013 (has links)
Mis en évidence dans les années 80 dans les domaines de la turbulence et des attracteurs étranges, les multifractals ont rapidement gagné en popularité. On les trouve aujourd'hui en finance, en géophysique, dans l'étude du trafic internet et dans bien d'autres domaines des sciences appliquées. Cet essor s'est accompagné de la nécessité de construire des modèles théoriques adaptés. La Mesure Aléatoire Multifractale de Bacry et Muzy est l'un de ces modèles. Du fait de son caractère très général, de sa grande souplesse et de sa relative simplicité, elle est devenue un outil central du domaine des multifractals depuis dix ans. Après un chapitre introductif, on propose dans cette thèse la construction de deux familles de processus multifractals. Ces constructions reposent sur les travaux de Schmitt et de ses co-auteurs et sur ceux de Bacry et Muzy. Dans le chapitre 2, on construit des processus multifractals à partir de moyennes mobiles alpha-stables, tandis que le chapitre 3 est consacré à la construction des Marches Aléatoires Fractionnaires Multifractales d'indice de Hurst 0<H<1/2. Ces travaux sont complétés par l'étude de versions affines par morceaux et par des simulations numériques. De nombreux problèmes connexes sont également étudiés. / Since their emergence in the 80's in the areas of turbulence and of strange attractors, multifractals have gained popularity. They appear now in finance, geophysics, study of network traffic and in many other areas of applied sciences. This development required adapted theoretical models. Bacry and Muzy's Multifractal Random Measure is one of these models. Thanks to its generality, its flexibility and to its relative simplicity, it became central in the domain of multifractals over the past ten years.In this PhD thesis, two families of multifractal processes are proposed. Their construction is based on the works of Schmitt and co-authors and of those of Bacry and Muzy. After the introduction (chapter 1), we use in chapter 2 alpha-stable moving averages to build multifractal processes; whereas chapter 3 is devoted to the construction of Multifractal Fractional Random Walks with Hurst index 0<H<1/2. This work is complemented by the study of linear versions and by numerical simulations. We study also numerous related problems.
6

Exploitation de la statistique du champ de speckle pour l'aide au diagnostic du syndrome cutané d'irradiation aigüe : confrontation des résultats biophysiques et biologiques

Carvalho, Odile 27 March 2008 (has links)
La surexposition aux rayonnements ionisants est actuellement une préoccupation croissante des cliniciens. Lors d'une exposition externe, la peau est le premier tissu lésé. Or, il n'existe pas d'outil fiable qui permette de diagnostiquer l'atteinte tissulaire. L'objectif de ce travail est donc de montrer la possibilité d'utiliser une méthode non invasive pour l'aide in vivo au diagnostic et au pronostic du syndrome cutané d'irradiation aigüe. La première partie de ce travail concerne le choix de la méthode d'investigation. L'interaction entre une lumière cohérente et un milieu diffusant engendre un phénomène d'interférence appelé speckle. Une analyse fréquentielle classique sur le champ de speckle est complétée par une approche stochastique pour en extraire des paramètres caractérisant les figures de speckle. Dans la deuxième partie le protocole expérimental a été testé afin de mieux comprendre le comportement des paramètres en fonciton de quelques propriétés physiques de milieux diffusants synthétiques. Cette étude a révélé que certains des paramètres du speckle étaient plus influencés par les gros diffuseurs (Mie) alors que d'autres l'étaient par les plus petits (Rayleigh). La troisième partie concerne l'application de cette méthode in vivo au syndrome cutané d'irradiation aigüe chez le porc. L'analyse des résultats acquis lors du suivi de plusieurs animaux montre la possibilité de discriminer les zones irradiées des zones saines plusieurs semaines avant l'apparition des premiers signes cliniques. Enfin, pour comprendre les résultats obtenus sur la brûlure radiologique, nous avons confronté l'ensemble des résultats physiques et ceux obtenus par les analyses histologiques. / Overexposure to ionizing radiation is now a growing concern of clinicians. In case of external exposure, the skin is the first tissue exposed. However, there are no tools that can diagnose pathological tissue. The objective of this work is to demonstrate the possibility of using a non-invasive method for in vivo diagnosis and prognosis of acute cutaneous radiation syndrome. The first part of this work concerns the choice of the investigation method. Interaction of coherent light and scattering medium creates a phenomenon called speckle. A classical frequential analysis on the spekle field is supplemented by a stochastic approach to extract parameters characterizing speckle patterns. In the second part, the experimental setup has been tested in order to understand the parameters behavior in function of some physical properties of synthetic scattering media. The study revealed that some of the speckle parameters were more influenced by big scatterers (Mie) while others were by the smallest (Rayleigh). The third part concerns the in vivo application of this method on acute cutaneous radiation syndrome in pigs. Analysis of the results gained during the monitoring of several animals showeb the ability to discriminate between irradiated and healthy zones several weeks before apparition of firsts clinical signs. Finally, in order to understand the results on the radiological burn, we have confronted all physical results and those obtained by histological analyses.
7

Calcul stochastique généralisé et applications au mouvement brownien fractionnaire; Estimation non-paramétrique de la volatilité et test d'adéquation

Nourdin, Ivan 30 June 2004 (has links) (PDF)
Dans la première partie de cette thèse, nous introduisons des intégrales d'ordre m et leur associons des formules d'Ito. Nous nous intéressons plus particulièrement au cas du mouvement brownien fractionnaire. Dans la seconde partie, nous étudions les approximations aux premier et second ordres des intégrales d'ordre m. Nous donnons des résultats de convergences presque-sure et en loi. Dans la troisième partie, nous nous intéressons aux équations différentielles dirigées par une fonction holdérienne. Nous donnons un résultat d'existence et d'unicité et étudions deux approximations de la solution. Dans la quatrième partie, nous étudions l'absolue continuité de la loi de la solution d'une équation différentielle stochastique dirigée par un mouvement brownien fractionnaire. Nous proposons un critère simple assurant que la solution au temps t admet une densité. Enfin, la dernière partie s'intéresse à l'estimation du coefficient de volatilité de la solution d'une équation différentielle stochastique classique. Nous construisons également un test d'adéquation.
8

Quelques applications de la théorie d'EDSR : EDDSR fractionnaire et propriétés de régularité des EDP-Intégrales

Jing, Shuai 14 December 2011 (has links) (PDF)
Dans la première partie de ma thèse, en adaptant l'idée de Jien et Ma (2010), l'objectif principal est étudier les équations différentielles doublement stochastiques rétrogrades, semi-linéaires ou nonlinéaires, régies par un mouvement brownien standard et un mouvement brownien fractionnaire indépendant, ainsi que les équations différentielles partielles stochastiques associées régies par le mouvement brownien fractionnaire. Pour le cas semi-linéaire, dans un papier en collaboration avec Jorge A. Leόn (CINVESTAV, Mexique), nous utilisons le calcul de Malliavin dans le cadre du mouvement brownien fractionnaire et la transformation de Girsanov anticipative. Pour le cas nonlinéaire, nous appliquons la transformation de Doss-Sussmann. Dans la deuxième partie nous étudions la régularité, à savoir la continuité de Lipschitz conjointe et la semiconcavité conjointe, de la solution de viscosité pour une classe générale d'équations aux dérivées partielles-intégrales non locales de type Hamilton-Jacobi-Bellman. Pour cette fin nous employons l'interprétation stochastique par une équation différentielle stochastique rétrograde contrôlée avec sauts, en appliquant du changement de temps pour le mouvement brownien et la transformation de Kulik pour la mesure aléatoire de Poisson. Notre travail est une généralisation des travaux de Buckdahn, Cannarsa et Quincampoix (2010) et Buckdahn, Huang et Li (2011).
9

Construction et étude de quelques processus multifractals

Perpète, N. 19 February 2013 (has links) (PDF)
Mis en évidence dans les années 80 dans les domaines de la turbulence et des attracteurs étranges, les multifractals ont rapidement gagné en popularité. On les trouve aujourd'hui en finance, en géophysique, dans l'étude du trafic internet et dans bien d'autres domaines des sciences appliquées. Cet essor s'est accompagné de la nécessité de construire des modèles théoriques adaptés. La Mesure Aléatoire Multifractale de Bacry et Muzy est l'un de ces modèles. Du fait de son caractère très général, de sa grande souplesse et de sa relative simplicité, elle est devenue un outil central du domaine des multifractals depuis dix ans. Après un chapitre introductif, on propose dans cette thèse la construction de deux familles de processus multifractals. Ces constructions reposent sur les travaux de Schmitt et de ses co-auteurs et sur ceux de Bacry et Muzy. Dans le chapitre 2, on construit des processus multifractals à partir de moyennes mobiles alpha-stables, tandis que le chapitre 3 est consacré à la construction des Marches Aléatoires Fractionnaires Multifractales d'indice de Hurst 0
10

Calcul stochastique via régularisation en dimension infinie avec perspectives financières

Di Girolami, Cristina 05 July 2010 (has links) (PDF)
Ce document de thèse développe certains aspects du calcul stochastique via régularisation pour des processus X à valeurs dans un espace de Banach général B. Il introduit un concept original de Chi-variation quadratique, où Chi est un sous-espace du dual d'un produit tensioriel B⊗B, muni de la topologie projective. Une attention particulière est dévouée au cas où B est l'espace des fonctions continues sur [-τ,0], τ>0. Une classe de résultats de stabilité de classe C^1 pour des processus ayant une Chi-variation quadratique est établie ainsi que des formules d'Itô pour de tels processus. Un rôle significatif est joué par les processus réels à variation quadratique finie X (par exemple un processus de Dirichlet, faible Dirichlet). Le processus naturel à valeurs dans C[-τ,0] est le dénommé processus fenêtre X_t(•) où X_t(y) = X_{t+y}, y ∈ [-τ,0]. Soit T>0. Si X est un processus dont la variation quadratique vaut [X]_t = t et h = H(X_T(•)) où H:C([-T,0])→ R est une fonction de classe C^3 Fréchet par rapport à L^2([-T,0] ou H dépend d'un numéro fini d' intégrales de Wiener, il est possible de représenter h comme un nombre réel H_0 plus une intégrale progressive du type \int_0^T \xi d^-X où \xi est un processus donné explicitement. Ce résultat de répresentation de la variable aléatoire h sera lié strictement à une fonction u:[0,T] x C([-T,0])→R qui en général est une solution d'une equation au derivées partielles en dimension infinie ayant la proprieté H_0=u(0, X_0(•)), \xi_t=Du(t, X_t(•))({0}). A certains égards, ceci généralise la formule de Clark-Ocone valable lorsque X est un mouvement brownien standard W. Une des motivations vient de la théorie de la couverture d'options lorsque le prix de l'actif soujacent n'est pas une semimartingale.

Page generated in 0.117 seconds