• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 75
  • 20
  • 15
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 309
  • 309
  • 107
  • 72
  • 59
  • 50
  • 38
  • 37
  • 33
  • 33
  • 28
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Fracture Toughness Testing of Plastics under Various Environmental Conditions

Velpuri, Seshagirirao V. 12 1900 (has links)
The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
32

Investigation of Microcracking and Damage Propagation in Cross-Ply Composite Laminates

Hottengada, Babruvahan 22 May 2006 (has links)
The present study investigates microcracking and damage progression in IM7/977-2, IM7/5555, and IM7/5276-1 [0/90/90/0] laminates. For each material system, seven to eight small coupons were axially loaded in a tensile substage. At increments of around 50 MPa the surfaces of the specimens were inspected via optical microscopy so that a history of microcracking damage as a function of applied loading could be charted. In the IM7/977-2 laminates microcracks were found to initiate on average at around 1050MPa; microcracking initiation for the other two systems was around 850 to 900 MPa. Also, the IM7/977-2 system displayed a steeper increase in crack density as a function of applied loading than the other two systems. The IM7/5555 system was the only system that achieved a microcracking saturation density; the saturation density was found to be around 17 cracks per centimeter. While the IM7/977-2 and IM7/5276-1 systems typically broke into two pieces at failure, the IM7/5555 specimens shattered into pieces. In addition, delaminations were observed in a majority of the IM7/5555 specimens at loadings 250MPa under the failure loads.
33

Estudo comparativo das propriedades mecânicas de aço AISI 5160 submetidos à Têmpera Convencional e Têmpera Intensiva / Comparative study of the mechanical properties of AISI 5160 submitted to Conventional Quenching and Intensive Quenching

Albano, Luigi Leonardo Mazzucco 18 February 2013 (has links)
Durante os anos desde 1910, diversos trabalhos científicos foram desenvolvidos, tornando o processo de têmpera bem estabelecido nas plantas industriais. Atualmente, existem diferentes tipos de têmpera e mais técnicas estão sendo desenvolvidas para aumentar as propriedades de componentes de aço. Um deles é o de têmpera intensiva, que pode ser considerado como um processo relativamente novo. O método de têmpera intensiva visa otimizar o processo produtivo, ao mesmo tempo em que diminui consideravelmente o custo da etapa de tratamento térmico. Além disso, atualmente o uso de soluções ambientalmente amigáveis torna este processo bem menos agressivo ao planeta. Neste trabalho realizou-se a têmpera intensiva e a têmpera convencional em corpos de prova preparados para teste de tenacidade à fratura. Trata-se, porém, de um método alternativo de teste, relativamente recente, no qual são considerados parâmetros de fratura dúctil e fratura frágil para o cálculo de K1C. Estes ensaios de tenacidade foram feitos a partir de ensaios de tração em corpos de prova com pré-trinca. Embora as tensões residuais compressivas tenham atingido os valores mais altos na têmpera intensiva, os resultados de tenacidade à fratura foram mais positivos para as amostras com têmpera convencional. A junção e aplicação desses métodos pode trazer um novo parâmetro de fabricação e análise de materiais metálicos, em especial aços-mola, que foi o objeto de estudo deste trabalho. / Since the beginning of 20th Century, several scientific works were developed and conventional quenching process became well established into the industrial area. Nowadays new quenching process were introduced increasing mechanical properties of the heat treated components. Intensive quenching is one of these process which optimize the heat treatment process using also quenchants considered nontoxic to the environment. In this work it was made comparative studies in the SAE 5160 samples which were submitted to conventional quenching and intensive quenching. Toughness fracture were evaluated using an alternative test where are analyzed ductile fracture and brittle fracture parameters to calculate KIC. In this method tensile test are performed in pre-cracked samples. Residual stresses were also measured and although intensive quenching promoted highest compressive stresses in the surface, KIC obtained in such samples presented low values compared with conventional quenching. The presented method of analysis will bring a new parameter for production and analysis for metallic materials, particularly spring steel, where compressive stress and toughness are important as properties for suspension components.
34

Functional multi-scale composites by coating of fibrous reinforcements

Patel, Kinjalkumar January 2018 (has links)
This study reports a novel and simple technique for successfully coating multi-walled carbon nanotubes (MWCNTs) on to the surface of carbon fibre (CF) fabric for the production of multi-scale CF-epoxy composites. Initially, epoxy composites with multi-scale reinforcement were produced by resin infusion (RI) using woven CF fabric coated with a dispersion of 1 wt. % MWCNTs in an epoxy binder of low molar mass. The effects of this reinforcement on the CF-epoxy interface with MWCNTs was studied in mode I and mode II interlaminar fracture toughness (ILFT) using double-cantilever beam (DCB) and 4 point end-notch flexure (4ENF) tests, respectively. Relative to an equivalent composite reinforced with non-coated CF reinforcement, the binder/MWCNTs coating increased significantly the ILFT of the CF-epoxy composite; in mode I by 105% and in mode II by 50%. This increase in ILFT was attributed to two main effects: Firstly, the binder alone (without MWCNTs), which has a much lower glass transition temperature (Tg) than that the matrix (45 vs. 140 °C), hindered crack propagation and increased the ILFT of the epoxy matrix by 25% for mode I and 15% for mode II; Secondly, the energy absorbing mechanisms of MWCNTs during fracture particularly pull-out and crack bridging. However the Tg of the matrix epoxy of the multi-scale composites was reduced to 118 °C compared to 140 °C, for the unmodified composite, due to phase mixing with the low Tg binder. For RI processing, the CF volume fraction of the composites prepared using coated CF was ≈50% compare to at ≈55% for the composite with non-coated CF. Curing agents were added to the binder, which not only increased the Tg from ≈50 °C to ≈100 °C, but also increased the Tg of the matrix epoxy of the multi-scale composites to 154 °C. Relative to an equivalent composite reinforced with non-coated CF reinforcement, the curable-binder/MWCNTs coating increased the ILFT of the CF-epoxy composite; in mode I by 120% and in mode II by 90%. A hybrid RI-hot press (HP) process was used to prepare CF-epoxy composites from coated fabrics with CF volume fractions of ≈55%. The damping curves for the HP-composites consisted of a β-peak, due to the formation of a third mixed phase, in addition to a γ-peak (assigned to the Tg of the binder) and an α-peak (assigned to the Tg of matrix epoxy). The β-peak, and the uniformly distributed nodular particles observed on the fracture surface of the matrix, by SEM, for HP-composites, are indicative of the formation of mixed-phase particles due to reaction induced phase separation (RIPS). Relative to an equivalent RI-composite, the curable-binder/MWCNTs treatment increased the ILFT of the CF-epoxy multi-scale composite; in mode I by 134% and in mode II by 15% for HP-composites. Impact test results showed that HP-composites absorbed more energy, due to CF fracture, compared to equivalent RI composites, which showed larger delamination areas after 5 J and 10 J impact. The out-of-plane electrical conductivity and thermal conductivity of the HP-composite with CF coated with curable-binder/MWCNTs was increased by ≈38% and ≈50%, respectively, compared to the composite with non-coated CF, indicating formation of MWCNTs networks in the matrix rich areas of the multi-scale composite.
35

Effect of nonwoven veil architectures on interlaminar fracture toughness of interleaved composites

Ramirez Elias, Victor January 2016 (has links)
This thesis addresses the influence of veil architecture on interlaminar fracture toughness (IFT) of interleaved unidirectional (UD) carbon fibre-epoxy composites with the aim to provide insights. Two nonwoven veils sets formed from polyphenylene sulfide (PPS) fibres with different diameters, with a range of increasing areal density, and a sample of polyetheretherketone (PEEK) fibres, with comparable fibre diameter, are characterised gravimetrically and by tensile tests (long and zero span). Consequently, the anisotropy and maximum stress transfer efficiency (MSTE) parameters are shown by these veils. Subsequently, the veils are interleaved within UD composites and assessed for mode I and mode II IFT. In both modes the veils show a strong dependence on areal density before a plateau at high areal densities, although the lower diameter fibres showed higher IFT values. Interpretation of the results reveal that the difference is attributable to the coverage of veils and thus, to the fraction of fibres in the propagation of crack. However, the effect of fibres is quite evident through the fibre bridging mechanism in the propagation of cracks, more significantly in mode I than in mode II. Moreover, in mode I and mode II a linkage of MSTE of veils with low data variability in IFT is observed. With regard to the anisotropy, this is notably significant only for the PEEK sample, though a statistical analysis supports that the IFT values from both types of fibres are consistent. A comparison of data revealed a slight dependence of the ratio mode II/mode I on areal density only for the larger diameter PPS fibre and the anisotropy of PEEK sample has a strong influence on this ratio. In both modes, however, data presented by this study are consistent with data provided by previous work. Subsequently, mass distribution of veil handsheets is assessed for both modes of IFT into UD composites, revealing no significant dependence of mass distribution on mode I IFT, whereas for mode II this dependence is significant due to the effect a variety of fractional open area size and the floculatted fibres. Fractographic observations via SEM (Scanning Electro Microscope) from representative interleaved composites are analysed and discussed.
36

Fracture analysis of glass microsphere filled epoxy resin syntactic foam

Young, Peter, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2008 (has links)
Hollow glass microspheres have been used extensively in the automotive and marine industries as an additive for reducing weight and saving material costs. They are also added to paints and other materials for their reflective properties. They have shown promise for weight critical applications, but have thus far resulted in materials with low fracture toughness and impact resistance when combined with thermosetting resins in syntactic foam. The advent of commercially available microspheres with a wide range of crushing strengths, densities and adhesive properties has given new impetus to research into syntactic foam with better fracture behaviour. Current research suggests that the beneficial effects on fracture and impact resistance gained by the addition of solid reinforcements such as rubber and ceramic particles are not seen with the addition of hollow glass microspheres. The research presented in this paper has examined the mechanisms for fracture resistance in glass microsphere filled epoxy (GMFE) syntactic foams, as well as determined the effect microsphere crushing strength and adhesion strength has on the material???s fracture toughness. The flexural properties of various GMFE have also been determined. GMFE were manufactured with varying microsphere volume fraction up to 50%, and with variances in microsphere crushing strength and adhesion. The specimens were tested for Mode I fracture toughness in a three point single edge notched bending setup as described in ASTM D5045 as well as a three point flexural setup as described in ASTM D790-3. Fracture surfaces were inspected using scanning electron microscope imaging to identify the fracture mechanisms in the presence of microspheres. Results indicate a positive effect on fracture toughness resulting from new fracture areas created as tails in the wake of the microspheres in the fracture plane. Results also indicate a negative effect on fracture toughness resulting from weak microspheres or from interfacial disbonding at the fracture plane. These two effects combine to show an increase in GMFE fracture toughness as the volume fraction of microspheres is increased to between 10 ??? 20% volume fraction (where the positive effect dominates), with a reduction in fracture toughness as microspheres are added further (where the negative effect dominates).
37

Experimental investigation of the interfacial fracture toughness in organic photovoltaics

Kim, Yongjin 27 March 2013 (has links)
The development of organic photovoltaics (OPVs) has attracted a lot of attention due to their potential to create a low cost flexible solar cell platform. In general, an OPV is comprised of a number of layers of thin films that include the electrodes, active layers and barrier films. Thus, with all of the interfaces within OPV devices, the potential for failure exists in numerous locations if adhesion at the interface between layers is inherently low or if a loss of adhesion due to device aging is encountered. To date, few studies have focused on the basic properties of adhesion in organic photovoltaics and its implications on device reliability. In this dissertation, we investigated the adhesion between interfaces for a model multilayer barrier film (SiNx/PMMA) used to encapsulate OPVs. The barrier films were manufactured using plasma enhanced chemical vapor deposition (PECVD) and the interfacial fracture toughness (Gc, J/m2) between the SiNx and PMMA were quantified. The fundamentals of the adhesion at these interfaces and methods to increase the adhesion were investigated. In addition, we investigated the adhesive/cohesive behavior of inverted OPVs with different electrode materials and interface treatments. Inverted OPVs were fabricated incorporating different interface modification techniques to understand their impact on adhesion determined through the interfacial fracture toughness (Gc, J/m2). Overall, the goal of this study is to quantify the adhesion at typical interfaces used in inverted OPVs and barrier films, to understand methods that influence the adhesion, and to determine methods to improve the adhesion for the long term mechanical reliability of OPV devices.
38

Fatigue and Fracture of Thin Metallic Foils with Aerospace Applications

Lamberson, Leslie Elise 12 April 2006 (has links)
Metallic honeycomb structures are being studied for use as thermal protection systems for hypersonic vehicles and as structural panels in other aerospace applications. One potential concern is the growth of fatigue cracks in the thin face-sheets used for these structures. To address this concern, the fatigue behavior of thin aluminum base alloy sheets ranging from 30 m to 250 m in thickness was investigated. The effect of material roll direction was also considered at 30 m. In all cases, the fatigue crack growth rates were found to be one to two orders of magnitude higher than that of the same material of greater thickness. In addition to data for fatigue crack growth rate, data are also presented for the effect of thickness on the fracture toughness of these materials.
39

A characterization of the interfacial and interlaminar properties of carbon nanotube modified carbon fiber/epoxy composites

Sager, Ryan James 15 May 2009 (has links)
The mechanical characterization of the interfacial shear strength (IFSS) of carbon nanotube (CNT) coated carbon fibers and the interlaminar fracture toughness of woven fabric carbon fiber/epoxy composites toughened with CNT/epoxy interleave films is presented. The deposition of multiwalled carbon nanotubes (MWCNT) onto the surface of carbon fibers through thermal chemical vapor deposition (CVD) was used in an effort to produce a graded, multifunctional interphase region used to improve the interfacial strength between the matrix and the reinforcing fiber. Characterization of the IFSS was performed using the single-fiber fragmentation test. It is shown that the application of a MWCNT coating improves the interfacial shear strength between the coated fiber and matrix when compared with uncoated fibers. The effect of CNT/epoxy thin interleave films on the Mode I interlaminar fracture toughness of woven fabric carbon/epoxy composites is examined using the double-cantilever beam (DCB) test. Initiation fracture toughness, represented by critical strain energy release rate (GIC), is shown to improve over standard un-toughened composites using amine-functionalized CNT/epoxy thin films. Propagation fracture toughness is shown to remain unaffected using amine-functionalized CNT/epoxy thin films with respect to standard un-toughened composites.
40

Dynamic Fracture Toughness of Polymer Composites

Harmeet Kaur 2010 December 1900 (has links)
Polymer composites are engineered materials widely being used and yet not completely understood for their dynamic response. It is important to fully characterize material properties before using them for applications in critical industries, like that of defense or transport. In this project, the focus is on determining dynamic fracture toughness property of fiber reinforced polymer composites by using a combined numerical- experimental methodology. Impact tests are conducted on Split-Hopkinson pressure bar with required instrumentation to obtain load-history and initiation of crack propagation parameters followed by finite element analysis to determine desired dynamic properties. Single edge notch bend(SENB) type geometry is used for Mode-I fracture testing and similarly end-notched flexure (ENF) type of geometry is proposed to test the samples for Mode-II type of fracture. Two different linear elastic fracture mechanics approaches are used- crack opening displacement and strain energy release rates. Dynamic fracture toughness values of around 50 MPa[square root of m] and 100 MPa[square root of m] in Mode-I, whereas, around 40 MPa[square root of m] and 6 MPa[square root of m] in Mode-II are observed for carbon-epoxy and fiberglass-epoxy composites respectively. To provide a better estimate of material response, Hashin damage model is employed which takes into account non-linear behavior of composites. As observed in previous studies, values estimated using a non-linear response of composite laminates are nearly three times as high, therefore, using a linear elastic material model could underestimate a material's capacity to sustain dynamic loads without failure. It is concluded that fracture initiation toughness property is rate dependent and is higher when subjected to dynamic loads. Microscopic examination of damaged samples and a higher value of dynamic fracture toughness for fiberglass-epoxy laminates as compared to carbon-epoxy laminates suggest that dynamic fracture toughness is also a function of many other variables like mode of fracture, dominant damage criteria, manufacturing process, constituent materials and their ratios.

Page generated in 0.0758 seconds