• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Shake table Seismic Performance Assessment and Fragility Analysis of Lightly Reinforced Concrete Block Shear Walls

Mojiri, Saeid January 2013 (has links)
<p>This thesis reports on shake table tests on fully-grouted reinforced masonry (RM) shear walls. The test walls covers a range of design parameters to facilitate benchmarking, a thorough performance investigation, and calibration of numerical models as well as development of fragility curves within the context of Performance Based Seismic Design (PBSD). The details of the experimental program undertaken, including general observations in terms of cracking patterns and failure modes of the tested walls and the results on the lateral strength, hysteretic response, dynamic properties, and the contribution of different displacement components to the response of the walls, are presented. More detailed analyses include seismic performance quantification of the walls in terms of inelastic behaviour characteristics, various energy components, and the effective dynamic properties of the tested walls. The analysis is concluded with development of simplified nonlinear response history analytical models and seismic fragility assessment tools for the tested walls. In general, the study results indicated that the displacement ductility capacity of the RM walls and their capability to dissipate energy through plastic hinging are higher than what is currently recognized by the National Building Code of Canada (NBCC). The fragility assessment study further indicated that similar walls are expected to conform to the current drift limits of the NBCC even at high seismic regions in Canada. The results of this study are expected to contribute to the growing Seismic Performance Database (SPD) of RM Seismic Force Resisting System (SFRS), and to the understanding of the lightly reinforced masonry wall system behaviour.</p> / Master of Applied Science (MASc)
12

Application of bridge specific fragility analysis in the seismic design process of bridges in california

Dukes, Jazalyn Denise 08 April 2013 (has links)
The California Department of Transportation (Caltrans) seismic bridge design process for an Ordinary Bridge described in the Seismic Design Criteria (SDC) directs the design engineer to meet minimum requirements resulting in the design of a bridge that should remain standing in the event of a Design Seismic Hazard. A bridge can be designed to sustain significant damage; however it should avoid the collapse limit state, where the bridge is unable to resist loads due to self-weight. Seismic hazards, in the form of a design spectrum or ground motion time histories, are used to determine the demands of the bridge components and bridge system. These demands are compared to the capacity of the components to ensure that the bridge meets key performance criteria. The SDC also specifies design detailing of various components, including abutments, foundations, hinge seats and bent caps. The expectation of following the guidelines set forth by the SDC during the design process is that the resulting bridge design will avoid collapse under anticipated seismic loads. While the code provisions provide different analyses to follow and component detailing to adhere to in order to ensure a proper bridge design, the SDC does not provide a way to quantitatively determine whether the bridge design has met the requirement of no-collapse. The objectives of this research are to introduce probabilistic fragility analysis into the Caltrans design process and address the gap of information in the current design process, namely the determination of whether the bridge design meets the performance criteria of no-collapse at the design hazard level. The motivation for this project is to improve the designer's understanding of the probabilistic performance of their bridge design as a function of important design details. To accomplish these goals, a new bridge fragility method is presented as well as a design support tool that provides design engineers with instant access to fragility information during the design process. These products were developed for one specific bridge type that is common in California, the two-span concrete box girder bridge. The end product, the design support tool, is a bridge-specific fragility generator that provides probabilistic performance information on the bridge design. With this tool, a designer can check the bridge design, after going through the SDC design process, to determine the performance of the bridge and its components at any hazard level. The design support tool can provide the user with the probability of failure or collapse for the specific bridge design, which will give insight to the user about whether the bridge design has achieved the performance objective set out in the SDC. The designer would also be able to determine the effect of a change in various design details on the performance and therefore make more informed design decisions.
13

Seismic vulnerability assessment of wharf structures

Shafieezadeh, Abdollah 08 July 2011 (has links)
Serving as critical gateways for international trade, seaports are pivotal elements in transportation networks. Any disruption in the activities of port infrastructures may lead to significant losses from secondary economic effects, and can hamper the response and recovery efforts following a natural disaster. Particularly poignant examples which revealed the significance of port operations were the 1995 Kobe earthquake and 2010 Haiti earthquake in which liquefaction and lateral spreading of embankments imposed severe damage to both structural and non-structural components of ports. Since container wharf structures are responsible for loading and unloading of cargo, it is essential to understand the performance of these structures during earthquakes. Although previous studies have provided insight into some aspects of the seismic response of wharves, limitations in the modeling of wharf structures and the surrounding soil media have constrained the understanding of various features of the wharf response. This research provides new insights into the seismic behavior of wharves by using new and advanced structure and soil modeling procedures to carry out two and three-dimensional seismic analyses of a pile-supported marginal wharf structure in liquefiable soils. Furthermore, this research investigates the interaction between cranes and wharves and closely assesses the role of wharf-crane interaction on the response of each of these systems. For this purpose, the specific effect of wharf-crane interaction is studied by incorporating advanced models of the crane with sliding/uplift base conditions. To reduce the computational time required for three-dimensional nonlinear dynamic analysis of the wharf in order to be applicable for probabilistic seismic demand analysis, a simplified wharf model and an analysis technique are introduced and verified. In the next step probabilistic seismic demand models (PSDMs) are generated by imposing the wharf models to a suit of ground deformations of the soil embankment and pore water pressure generated for this study through free-field analysis. Convolving PSDMs and the limit states, a set of fragility curves are developed for critical wharf components whose damage induces a disruption in the normal operation of ports. The developed fragility curves provide decision makers with essential tools for maximizing investment in wharf retrofit and fill a major gap in seismic risk assessment of seaports which can be used to assess the regional impact of the damage to wharves during a natural hazard event.
14

Uncertainty treatment in performance based seismic assessment of typical bridge classes in United States

Mehdizadeh, Mohammad 01 January 2014 (has links)
Bridge networks are expensive and complex infrastructures and are essential components of today's transportation systems. Despite the advancement in computer aided modeling and increasing the computational power which is increasing the accessibility for developing the fragility curves of bridges, the complexity of the problem and uncertainties involved in fragility analysis of the bridge structures in addition to difficulties in validating the results obtained from the analysis requires precaution in utilization of the results as a decision making tool. The main focus of this research is to address, study and treatment of uncertainties incorporated in various steps of performance based assessments (PBA) of the bridge structures. In this research the uncertainties is divided into three main categories. First, the uncertainties that come from ground motions time and frequency content alteration because of scarcity of the recorded ground motions in the database. Second, uncertainties associated in the modeling and simulation procedure of PBA, and third uncertainties originated from simplistic approach and methods utilized in the conventional procedure of PBA of the structures. Legitimacy of the scaling of ground motions is studied using the response of several simple nonlinear systems to amplitude scaled ground motions suites. Bias in the response obtained compared to unscaled records for both as recorded and synthetic ground motions. Results from this section of the research show the amount of the bias is considerable and can significantly affect the outcome of PBA. The origin of the bias is investigated and consequently a new metric is proposed to predict the bias induced by ground motion scaling without nonlinear analysis. Results demonstrate that utilizing the predictor as a scaling parameter can significantly reduce the bias for various nonlinear structures. Therefore utilizing the new metric as the intensity measuring parameter of the ground motions is recommended in PBA. To address the uncertainties associated in the modeling and simulation, MSSS concrete girder bridge class were selected due to the frequency of the construction in USCS region and lack of seismic detailing. A large scale parameters screening study is performed using Placket-Burman experimental design that considers a more complete group of parameters to decrease the computational expense of probabilistic study of the structure's seismic response. Fragility analysis for MSSS bridge is performed and the effect of removing the lesser important parameters the probabilistic demand model was investigated. This study reveals parameters reduction based on screening study techniques can be utilized to increase efficiency in fragility analysis procedure without compromising the accuracy of the outcome. The results from this study also provides more direct information on parameter reduction for PBA as well as provide insight into where future investments into higher fidelity finite element and constitutive models should be targeted. Conventional simplistic PBA approach does not account for the fundamental correlation between demand and capacity models. A more comprehensive PBA approach is presented and fragility analysis is performed with implementation of a new formulation in the component fragility analysis for MSSS bridge class and the outcome is compared with the one from conventional procedure. The results shows the correlation between demand and capacity affects the outcome of PBA and the fragility functions variation is not negligible. Therefore using the presented approach is necessary when accuracy is needed.

Page generated in 0.0429 seconds