• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • 7
  • 5
  • 4
  • Tagged with
  • 100
  • 100
  • 30
  • 28
  • 24
  • 15
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Experimental Tests of Pre - placed Aggregate Concrete for Concrete Repairs

Hassan, Husseen, Sahal, Abdifatah January 2020 (has links)
Since a large part of the hydropower structures in Sweden was built in the 1950s and 1960s, many of them are slowly but surely exhibiting deterioration. The hydropower companies are facing big challenges and are consequently investing in effective repairing methods since a hydropower structure failure could pose serious consequences and dangers to people, the environment, and the community. Many structures within hydropower are made of concrete and the demands on the new supplementing concrete are high. Concrete with the potential to meet these high demands is the pre-placed aggregate concrete, which has shown promising results regarding its mechanical properties in previous studies. For this reason, this type of concrete is of interest to investigate. The focus has not been on optimizing the pre-placed aggregate concrete for full-scale productions. Instead, the main objectives of this master thesis were to study and analyze the mechanical properties of this type of concrete, such as shrinkage, compressive strength, splitting tensile strength, freeze-thaw resistance and moreover investigate parameters of importance in the mix design to obtain a homogenous and easy flowing grout that successfully could fill the voids between the coarse aggregates. The investigations were carried out by laboratory experiments in the research and laboratory facilities of Vattenfall in Älvkarleby. The mix design of the grout was developed using the methods and requirements stated in the American Society for Testing and Materials, ASTM standards, and The Swedish Institute for Standards, SiS. A total of 15 grout-mixes were made. However, only the last five were used to cast specimens as the air content was insufficient in the first ten. The results indicated that it is necessary to replace the air-entraining admixture with microspheres in order for the pre-placed aggregate concrete to meet the requirements in exposure class XF3 and XC4. The scaling of the pre-placed aggregate concrete was less than 0.1 kg/m2 at 56 cycles, and thus, the freeze-thaw resistance was classed as very good. Moreover, the use of slag considerably reduced the bleeding of the grout and also improved the casting results. However, on the other hand, it increased the shrinkage of the pre-placed aggregate concrete. An efficiency factor of 0.6 proved to be too low since the compressive strength of the specimen with slag was approximately 50 % higher than the ones without. Furthermore, the shrinkage of the pre-placed aggregate concrete was after 63 days found to be lower than that of the conventional concrete. Also, the compressive strength of the pre-placed aggregate concrete without slag proved to be approximately 15 % lower than that of conventional concrete. Additionally, vibration during casting was found to increase the compressive strength of the pre-placed aggregate concrete and also improved the casting results. Low bleeding, combined with a high discharge time of approximately 45 seconds for 1.7 liters of grout, generated the best casting results. The results from the investigations have shown that this type of concrete has great potential. However, actions and further investigations should be made to see whether changing the fine aggregate size to a smaller one improves the ability of the grout to penetrate the voids between the coarse aggregates. Moreover, pump injection of the grout should be tested instead of pouring it over the coarse aggregates to see whether it improves the casting results and the mechanical properties. / Då en stor del av vattenkraftsdammarna i Sverige byggdes på 1950 och 1960-talet börjar många av dessa sakta men säkert brytas ner. Vattenkraftföretagen står inför stora utmaningar och investerar följaktligen i effektiva reparationsmetoder då dammbrott skulle kunna få allvarliga konsekvenser för människor, den omgivande miljön och för samhället. Flertalet konstruktioner inom vattenkraften är gjorda av betong och kraven på den nya kompletterande betongen är höga. En betong med potentialen att möta och uppfylla dessa höga krav är injekteringsbetongen som i tidigare studier uppvisat lovande resultat beträffande dess mekaniska egenskaper. Med anledning av detta är injekteringsbetongen av intresse att undersöka. Fokus har inte varit på att optimera injekteringsbetongen i syfte att genomföra fullskaliga försök. Istället har huvudsyftet med detta examensarbete varit att studera och analysera injekteringsbetongens mekaniska egenskaper såsom krympning, tryckhållfasthet, spräckhållfasthet, frostbeständighet samt undersöka viktiga parametrar i skapandet av ett homogent och lättflytande cementbruk som med god framgång kunde fylla ut hålrummen mellan grova ballasten. Undersökningarna utfördes genom laboratorieförsök på Vattenfalls betonglaboratorium i Älvkarleby. Vidare har skapandet och utvecklandet av bruket utförts i enlighet med metoder och krav angivna i American Society for Testing and Materials, ASTM standards, samt i Svenska institutet för Standarder, SiS. Totalt gjordes 15 bruksblandningar, dock användes enbart de sista fem till gjutning av provkroppar då lufthalten visade sig vara för låg i dem första tio. Resultaten indikerade på att det är nödvändigt att ersätta luftporbildare med mikrosfärer för att erhålla en lufthalt som uppfyller kraven för betong i exponeringsklass XF3 samt XC4. Injekteringbetongens avflagning efter 56 dygn var mindre än 0.1 kg/m2 och frostbeständigheten kunde därmed klassas som mycket god. Användningen av slagg minskade cementbrukets vattenseparation avsevärt och bidrog även till förbättrade gjutresultat. Dock bidrog det å andra sidan till en ökad krympning hos injekteringsbetongen. En effektivitetsfaktor på 0.6 visade sig vara för låg då injekteringsbetongen med slagg hade en cirka 50 % högre tryckhållfasthet än dem utan. Dessutom visade sig injekteringsbetongens krympning vara mindre än den konventionella betongens efter 63 dagar. Tryckhållfastheten hos injekteringsbetongen utan slagg uppvisade även en cirka 15 % lägre tryckhållfasthet än den konventionella betongens. Vibrering under gjutning visade sig höja tryckhållfastheten hos injekteringsbetongen samt förbättra gjutresultaten. En låg vattenseparation i kombination med en flödestid på cirka 45 sekunder för 1.7 liter bruk visade sig ge bästa gjutresultaten. Resultaten från laboratorieförsöken har visat på att injekteringsbetongen besitter stor potential. Dock bör ytterligare undersökningar genomföras för att bedöma huruvida en mindre ballastfraktion för sanden påverkar brukets förmåga att penetrera den grova ballasten. Vidare bör bruket pumpas in istället för att hällas över den grova ballasten, detta för att se huruvida gjutresultaten samt de mekaniska egenskaperna hos injekteringsbetongen skulle förbättras.
82

Comparison of Winter Temperature Profiles in Asphalt and Concrete Pavements

Dye, Jeremy Brooks 12 August 2010 (has links) (PDF)
Because winter maintenance is so costly, Utah Department of Transportation (UDOT) personnel asked researchers at Brigham Young University to determine whether asphalt or concrete pavements require more winter maintenance. Differing thermal properties suggest that, for the same environmental conditions, asphalt and concrete pavements will have different temperature profiles. Climatological data from 22 environmental sensor stations (ESSs) near asphalt roads and nine ESSs near concrete roads were used to 1) determine which pavement type has higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and concrete pavements to determine the pavement type below which more freeze-thaw cycles of the underlying soil occur. Twelve continuous months of climatological data, primarily from the 2009 calendar year, were acquired from the road weather information system operated by UDOT, and erroneous data were removed from the data set. To predict pavement surface temperature, a multiple linear regression was performed with input parameters of pavement type, time period, and air temperature. Similarly, a multiple linear regression was performed to predict the number of subsurface freeze-thaw cycles, based on month, latitude, elevation, and pavement type. A finite-difference model was created to model surface temperatures of asphalt and concrete pavements based on air temperature and incoming radiation. The statistical analysis predicting pavement surface temperatures showed that, for near-freezing conditions, asphalt is better in the afternoon, and concrete is better for other times of the day, but that neither pavement type is better, on average. Asphalt and concrete are equally likely to collect snow or ice on their surfaces, and both pavements are expected to require equal amounts of winter maintenance, on average. Finite-difference analysis results confirmed that, for times of low incident radiation (night), concrete reaches higher temperatures than asphalt, and for times of high incident radiation (day), asphalt reaches higher temperatures than concrete. The regression equation predicting the number of subsurface freeze-thaw cycles provided estimates that did not correlate well with measured values. Consequently, an entirely different analysis must be conducted with different input variables. Data that were not available for this research but are likely necessary in estimating the number of freeze-thaw cycles under the pavement include pavement layer thicknesses, layer types, and layer moisture contents.
83

Effects of Accelerated Aging on SiO₂-Treated Wood Samples

Beuthe, Callisto Ariadne 18 December 2023 (has links)
Wood is a viscoelastic composite material that has been historically prominent in the construction of buildings and continues to see widespread use. When used for exterior applications, wood is exposed to dynamic environmental conditions and can degrade if left untreated. Previous research by Lemaire-Paul et al. (2022) has proven that vacuum impregnation of the wood cell structure with a silica (SiO₂) nanoparticle colloid under a vacuum pressure of -90 kPa can enhance the viscoelastic properties, increase the density, and reduce the water uptake of white spruce wood. However, the behaviour of SiO₂-treated wood under different environmental conditions over time has yet to be fully explored. This research aims to examine the durability and performance of SiO₂-treated spruce wood samples subjected to accelerated aging conditions under high temperature and humidity as well as freeze-thaw cycling. Spruce wood samples were treated with 40% SiO₂ nanoparticle colloid under a vacuum pressure of -90 kPa. One set was placed in a hydrolytic aging chamber at 90°C and 80% RH. Another set was placed in a freeze-thaw cycling chamber that cycled from 25°C to -18°C and back at a rate of 6 cycles per day. The samples were removed at regular intervals and thermogravimetric analysis, dynamic mechanical analysis, tensiometry, X-Ray diffraction, and scanning electron microscopy were performed. When compared to the results obtained from a set of non-treated samples, it was found that the SiO₂-treated samples exhibited lower water uptake values that stabilized over time, as well as a lower rate of decrease in peak cellulose degradation temperatures under hydrolytic aging and a slight increase in peak cellulose degradation temperature over time under freeze-thaw aging. The effects of both aging conditions on the viscoelastic properties of the samples were also found to be insignificant. Both types of samples under both types of aging also exhibited an increase in crystallinity over time. These results indicate that the durability and properties of wood can be improved through nano-SiO₂ impregnation as the material remains relatively stable when subjected to high temperature and humidity conditions as well as freeze-thaw cycling over time.
84

The Effects of Vegetation on Stream Bank Erosion

Thompson, Theresa M. 17 June 2004 (has links)
Riparian buffers are promoted for water quality improvement, habitat restoration, and stream bank stabilization. While considerable research has been conducted on the effects of riparian buffers on water quality and aquatic habitat, little is known about the influence of riparian vegetation on stream bank erosion. The overall goal of this research was to evaluate the effects of woody and herbaceous riparian buffers on stream bank erosion. This goal was addressed by measuring the erodibility and critical shear stress of rooted bank soils in situ using a submerged jet test device. Additionally, several soil, vegetation, and stream chemistry factors that could potentially impact the fluvial entrainment of soils were measured. A total of 25 field sites in the Blacksburg, Virginia area were tested. Each field site consisted of a 2nd-4th order stream with a relatively homogeneous vegetated riparian buffer over a 30 m reach. Riparian vegetation ranged from short turfgrass to mature riparian forest. Multiple linear regression analysis was conducted to determine those factors that most influence stream bank erodibility and the relative impact of riparian vegetation. Results of this research indicated woody riparian vegetation reduced the susceptibility of stream bank soils to erosion by fluvial entrainment. Riparian forests had a greater density of larger diameter roots, particularly at the bank toe where the hydraulic stresses are the greatest. These larger roots (diameters > 0.5 mm) provided more resistance to erosion than the very fine roots of herbaceous plants. Due to limitations in the root sampling methodology, these results are primarily applicable to steep banks with little herbaceous vegetation on the bank face, such as those found on the outside of meander bends. In addition to reinforcing the stream banks, riparian vegetation also affected soil moisture and altered the local microclimate. While summer soil desiccation was reduced under deciduous riparian forests, as compared to herbaceous vegetation, winter freeze-thaw cycling was greater. As a result, in silty soils that were susceptible to freeze-thaw cycling, the beneficial effects of root reinforcement by woody vegetation were offset by increased freeze-thaw cycling. Using the study results in an example application, it was shown that converting a predominately herbaceous riparian buffer to a forested buffer could reduce soil erodibility by as much as 39% in soils with low silt contents. Conversely, for a stream composed primarily of silt soils that are prone to freeze-thaw cycling, afforestation could lead to localized increases in soil erodibility of as much as 38%. It should be emphasized that the riparian forests in this study were deciduous; similar results would not be expected under coniferous forests that maintain a dense canopy throughout the year. Additionally, because dense herbaceous vegetation would likely not develop in the outside of meander bends where hydraulic shear stresses are greatest, the reductions in soil erodibility afforded by the herbaceous vegetation would be limited to areas of low shear stress, such as on gently sloping banks along the inside of meander bends. As the first testing of this type, this study provided quantitative information on the effects of vegetation on subaerial processes and stream bank erosion. It also represents the first measurements of the soil erosion parameters, soil erodibility and critical shear stress, for vegetated stream banks. These parameters are crucial for modeling the effects of riparian vegetation for stream restoration design and for water quality simulation modeling. / Ph. D.
85

Effect of Surface Moisture Condition on Substrate-Repair Concrete Overlay Transition Zone

Annand, Douglas Michael 30 January 2023 (has links)
Concrete is the most widely used construction material in the world. Given its relative availability, strength, economy, and versatility to fit various applications, the material has been incorporated in roadways, bridges, buildings, and a host of other infrastructure projects. Oftentimes, concrete will be exposed to several environmental conditions that ultimately affect its durability and lifespan. These conditions include repeated freezing and thawing, chloride intrusion, sulfate attack, alkali-silica reaction, and many others. Given the age and condition of American infrastructure, concrete structures throughout the country need repair or rehabilitation. Often this repair includes the removal of degraded or damaged concrete and the application of an overlay material. There are several factors affecting the bond performance of the newly formed substrate-repair concrete, such as surface roughness, overlay material, and substrate moisture condition. The work presented in this thesis is dedicated to understanding the effect of substrate moisture condition on the overlay transition zone (OTZ) of the substrate-repair concrete. The substrate moisture condition can significantly impact the microstructure characterization of the OTZ. If the substrate is too dry, then it may absorb water from the repair material, reducing the local water-to-cement (w/c) ratio in the OTZ. Conversely, if the substrate is too wet, then the w/c ratio of the OTZ will be locally increased. In both scenarios, the interfacial bond strength is expected to be modified due to the change in the local w/c ratio. To understand this effect, various test methods and degradation mechanisms were explored. Initially, substrate-repair concrete specimens were prepared utilizing three separate substrate moisture conditions: saturated surfaced dry (SSD), sub-saturated surface dry (Sub-SSD), and oven dry (OD). After allowing these samples to cure, the strength and ion penetration risk were evaluated. The bond strength of the samples was evaluated through flexural strength testing and fracture energy determined through the RILEM draft tests. The OTZ ion penetration risk was evaluated by conducting rapid chloride penetration test (RCPT) on samples prepared with the three substrate moisture conditions. Furthermore, to determine the effect of repeated freezing and thawing on the OTZ and flexural strength, additional samples were created with the three moisture conditions. After allowing these samples to cure, they were subjected to ASTM C666 and were tested to observe their flexural strength. Another important performance indicator of concrete elements is its resistance to chloride ion penetration and corrosion. Since many structural elements are designed with steel reinforcement, chloride ion penetration represents a critical parameter in projecting material performance, since chloride ions will accelerate the rate of steel corrosion. Oftentimes, a key element in projecting this performance is identifying the rate at which ions diffuse through the material. There remain many established techniques to identify this rate of diffusion and derive a chloride diffusion coefficient; however, many of them are either destructive or qualitative in nature. In recent years, transmission X-ray microscopy (TXM) has been employed to non-destructively track diffusion and develop diffusion coefficients. The work presented in this thesis surrounds the efforts of incorporating TXM experiments at Virginia Tech. This work initially utilized a SkyScan 1174 μCT, and additional work in this thesis presents the design and construction of a dental X-ray system based on the checking ion penetration (CHIP) design. This system can conduct TXM experiments utilizing a dental X-ray as the source. The research, design, and construction of the CHIP system is discussed in this thesis. Ultimately, the research in this thesis has not observed any significant relationship between substrate moisture condition and overlay bond strength. There does appear to be an increase in chloride ion resistance for drier substrates, suggesting that pre-wetting the surface increases penetrability of the interface. / Master of Science / Concrete is the most widely used construction material in the world. Given its relative availability, strength, economy, and versatility to fit various applications, the material has been incorporated in roadways, bridges, buildings, and a host of other infrastructure projects. Oftentimes, concrete will be exposed to several environmental conditions that ultimately affect its durability and lifespan. These conditions include repeated freezing and thawing, chloride intrusion, sulfate attack, alkali-silica reaction, and many others. These environmental conditions ultimately degrade the material by inducing cracks, exposing steel reinforcement, and spalling. When the concrete has experienced significant deterioration, repair and rehabilitation of the damaged section must be performed. Most often, this repair consists of the removal of damaged concrete and the application of an overlay material to prevent further deterioration. The topics discussed in this thesis evaluate the optimum substrate conditions prior to an overlay application and the implementation of techniques to evaluate deterioration mechanisms. There are several substrate conditions that will affect bonding with the overlay material, including surface roughness, moisture conditions, and overlay type. This paper focused on the moisture condition and what effect this had on bond strength and resistance to chloride intrusion. This effect was studied in laboratory conditions and under environmental conditions such as rapid freezing and thawing. Several different deterioration mechanisms may contribute to concrete degradation. The research presented in this thesis also aimed to evaluate chloride ion diffusion. To evaluate this mechanism, two systems were explored with the intent of conducting transmission X-ray microscopy (TXM). With TXM, chloride ion diffusion can be tracked to determine the rate at which ions diffuse through the concrete. The two systems explored were an X-ray computed tomography scanner and a dental X-ray system. Both systems can conduct TXM, and this paper presents the efforts dedicated to developing them for this technique at Virginia Tech. Ultimately, the research in this thesis has not observed any significant relationship between substrate moisture condition and overlay bond strength. There does appear to be an increase in chloride ion resistance for drier substrates, suggesting that pre-wetting the surface increases penetrability of the interface.
86

Water and Heat Transport in Road Structures : Development of Mechanistic Models

Hansson, Klas January 2005 (has links)
<p>The coupled transport of water and heat, involving freezing and thawing, in the road structure and its immediate environment is important to consider for optimal design and maintenance of roads and when assessing solute transport, of e.g. de-icing salt, from roads. The objective of this study was to develop mechanistic models, and measurement techniques, suitable to describe and understand water flow and heat flux in road structures exposed to a cold climate. </p><p>Freezing and thawing was accounted for by implementing new routines in two numerical models (HYDRUS1D/2D). The sensitivity of the model output to changes in parameter values and operational hydrological data was investigated by uncertainty and sensitivity analyses. The effect of rainfall event characteristics and asphalt fractures on the subsurface flow pattern was investigated by scenario modelling. The performance of water content reflectometers (WCR), measuring water content, was evaluated using measurements in two road structure materials. A numerical model was used to simulate WCR sensor response. The freezing/thawing routines were stable and provided results in agreement with laboratory measurements. Frost depth, thawing period, and freezing-induced water redistribution in a model road was greatly affected by groundwater level and type of subgrade. The simulated subsurface flow patterns corresponded well with published field observations. A new method was successful in enabling the application of time domain reflectometer (TDR) calibration equations to WCR output. The observed distortion in sampling volume for one of the road materials could be explained by the WCR sensor numerical model. Soil physical, hydrological, and hydraulic modules proved successful in simulating the coupled transport of water and heat in and on the road structure. It was demonstrated in this thesis that numerical models can improve the interpretation and explanation of measurements. The HYDRUS model was an accurate and pedagogical tool, clearly useful in road design and management.</p>
87

Water and Heat Transport in Road Structures : Development of Mechanistic Models

Hansson, Klas January 2005 (has links)
The coupled transport of water and heat, involving freezing and thawing, in the road structure and its immediate environment is important to consider for optimal design and maintenance of roads and when assessing solute transport, of e.g. de-icing salt, from roads. The objective of this study was to develop mechanistic models, and measurement techniques, suitable to describe and understand water flow and heat flux in road structures exposed to a cold climate. Freezing and thawing was accounted for by implementing new routines in two numerical models (HYDRUS1D/2D). The sensitivity of the model output to changes in parameter values and operational hydrological data was investigated by uncertainty and sensitivity analyses. The effect of rainfall event characteristics and asphalt fractures on the subsurface flow pattern was investigated by scenario modelling. The performance of water content reflectometers (WCR), measuring water content, was evaluated using measurements in two road structure materials. A numerical model was used to simulate WCR sensor response. The freezing/thawing routines were stable and provided results in agreement with laboratory measurements. Frost depth, thawing period, and freezing-induced water redistribution in a model road was greatly affected by groundwater level and type of subgrade. The simulated subsurface flow patterns corresponded well with published field observations. A new method was successful in enabling the application of time domain reflectometer (TDR) calibration equations to WCR output. The observed distortion in sampling volume for one of the road materials could be explained by the WCR sensor numerical model. Soil physical, hydrological, and hydraulic modules proved successful in simulating the coupled transport of water and heat in and on the road structure. It was demonstrated in this thesis that numerical models can improve the interpretation and explanation of measurements. The HYDRUS model was an accurate and pedagogical tool, clearly useful in road design and management.
88

Freeze-Thaw Effects on Soils Treated for Water Repellency

Fink, Dwayne H., Mitchell, Stanley T. 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / Water can be supplied to many arid areas by harvesting the precipitation that falls on artificially prepared water-repellent soil catchments. The failure, in 1973, of wax-treated water harvesting catchment led to this study which indicates that the failure was due to swelling and shrinking of the treated soil which caused complete structural breakdown and loss of repellency. The laboratory freeze-thaw studies demonstrated that the smoother the plot, the less chance of freeze-thaw damage. Generally, coarser-textured soil can withstand freeze-thaw cycles better than finer-textured soils. Soil properties, other than texture, may also affect resistance to damage by freeze-thaw cycles. Increasing the repellent application rate may improve resistance to breakdown.
89

The Molecular Composition of Soil Organic Matter (SOM) and Potential Responses to Global Warming and Elevated CO2

Feng, Xiaojuan 07 March 2011 (has links)
Soil organic matter (SOM) contains about twice the amount of carbon in the atmosphere. With global changes, the potential shifts in SOM quantity and quality are a major concern. Due to its heterogeneity, SOM remains largely unknown in terms of its molecular composition and responses to climatic events. Traditional bulk soil analysis cannot depict the structural changes in SOM. This thesis applies two complementary molecular-level methods, i.e., SOM biomarker gas chromatography/mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR) spectroscopy, to examine the origin and degradation of various SOM components in grassland and temperate forest soils, and to investigate the shifts in microbial community and SOM composition with both laboratory- and field-simulated global changes, such as frequent freeze-thaw cycles, increasing soil temperatures, elevated atmospheric CO2 levels, and nitrogen (N) deposition. This thesis has several major findings. First, as the most active component in soil, microbial communities were sensitive to substrate availability changes resulting from prolonged soil incubation, freeze-thaw-induced cell lyses, N fertilization and increased plant inputs under elevated CO2 or soil warming. Microbial community shifts have direct impacts on SOM decomposition patterns. For instance, an increased fungal community was believed to contribute to the enhanced lignin oxidation in an in situ soil warming experiment as the primary degrader of lignin in terrestrial environments. Second, contrast to the conventional belief that aromatic structure was recalcitrant and stable in SOM, ester-bond aliphatic lipids primarily originating from plant cutin and suberin were preferentially preserved in the Canadian Prairie grassland soil profiles as compared with lignin-derived phenols. Cutin- and suberin-derived compounds also demonstrated higher stability during soil incubation. With an increased litter production under elevated CO2 or global warming, an enrichment of alkyl structures that had strong contributions from leaf cuticles was observed in the Duke Forest Free Air CO2 Enrichment (FACE) and soil warming experiments, suggesting an accumulation of plant-derived recalcitrant carbon in the soil. These results have significant implications for carbon sequestration and terrestrial biogeochemistry. Overall, this thesis represents the first of its kind to employ comprehensive molecular-level techniques in the investigation of SOM structural alterations under global changes.
90

The Molecular Composition of Soil Organic Matter (SOM) and Potential Responses to Global Warming and Elevated CO2

Feng, Xiaojuan 07 March 2011 (has links)
Soil organic matter (SOM) contains about twice the amount of carbon in the atmosphere. With global changes, the potential shifts in SOM quantity and quality are a major concern. Due to its heterogeneity, SOM remains largely unknown in terms of its molecular composition and responses to climatic events. Traditional bulk soil analysis cannot depict the structural changes in SOM. This thesis applies two complementary molecular-level methods, i.e., SOM biomarker gas chromatography/mass spectrometry (GC/MS) and nuclear magnetic resonance (NMR) spectroscopy, to examine the origin and degradation of various SOM components in grassland and temperate forest soils, and to investigate the shifts in microbial community and SOM composition with both laboratory- and field-simulated global changes, such as frequent freeze-thaw cycles, increasing soil temperatures, elevated atmospheric CO2 levels, and nitrogen (N) deposition. This thesis has several major findings. First, as the most active component in soil, microbial communities were sensitive to substrate availability changes resulting from prolonged soil incubation, freeze-thaw-induced cell lyses, N fertilization and increased plant inputs under elevated CO2 or soil warming. Microbial community shifts have direct impacts on SOM decomposition patterns. For instance, an increased fungal community was believed to contribute to the enhanced lignin oxidation in an in situ soil warming experiment as the primary degrader of lignin in terrestrial environments. Second, contrast to the conventional belief that aromatic structure was recalcitrant and stable in SOM, ester-bond aliphatic lipids primarily originating from plant cutin and suberin were preferentially preserved in the Canadian Prairie grassland soil profiles as compared with lignin-derived phenols. Cutin- and suberin-derived compounds also demonstrated higher stability during soil incubation. With an increased litter production under elevated CO2 or global warming, an enrichment of alkyl structures that had strong contributions from leaf cuticles was observed in the Duke Forest Free Air CO2 Enrichment (FACE) and soil warming experiments, suggesting an accumulation of plant-derived recalcitrant carbon in the soil. These results have significant implications for carbon sequestration and terrestrial biogeochemistry. Overall, this thesis represents the first of its kind to employ comprehensive molecular-level techniques in the investigation of SOM structural alterations under global changes.

Page generated in 0.0475 seconds