• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

OFDM Carrier Frequency Offset Estimation

Osesina, Olukayode Isaac, Zhang, Yafan, Pagoti, Shirisha January 2006 (has links)
<p>This thesis discusses and investigates the estimation of carrier offset frequency in</p><p>orthogonal frequency division multiplexing (OFDM) mobile systems. The investigation</p><p>starts by using Mobile WiMAX wireless communication specifications described</p><p>in IEEE 802.16e as the primary system setup. Under this setup orthogonal</p><p>frequency division multiple access (OFDMA) is used as a physical layer scheme; it</p><p>also involves the use of pilots in the OFDM symbol for channel estimation.</p><p>Although OFDM is resistant to multipath fading, it requires a high degree of synchronisation</p><p>to maintain sub-carrier orthogonality. Therefore the level of performance</p><p>of the system depends first on the accuracy in estimating the carrier frequency</p><p>offset and then the estimation of the channel. Maximum likelihood estimator</p><p>is used for estimating carrier frequency offset; its performance under different conditions</p><p>for example SNR, number of virtual carriers needed for estimation etc. are</p><p>simulated and compared with theoretical results. The optimality of IEEE 802.16e</p><p>specifications was also examined during the simulations and results analysis.</p>
2

OFDM Carrier Frequency Offset Estimation

Osesina, Olukayode Isaac, Zhang, Yafan, Pagoti, Shirisha January 2006 (has links)
This thesis discusses and investigates the estimation of carrier offset frequency in orthogonal frequency division multiplexing (OFDM) mobile systems. The investigation starts by using Mobile WiMAX wireless communication specifications described in IEEE 802.16e as the primary system setup. Under this setup orthogonal frequency division multiple access (OFDMA) is used as a physical layer scheme; it also involves the use of pilots in the OFDM symbol for channel estimation. Although OFDM is resistant to multipath fading, it requires a high degree of synchronisation to maintain sub-carrier orthogonality. Therefore the level of performance of the system depends first on the accuracy in estimating the carrier frequency offset and then the estimation of the channel. Maximum likelihood estimator is used for estimating carrier frequency offset; its performance under different conditions for example SNR, number of virtual carriers needed for estimation etc. are simulated and compared with theoretical results. The optimality of IEEE 802.16e specifications was also examined during the simulations and results analysis.
3

Iterative receivers for digital communications via variational inference and estimation

Nissilä, M. (Mauri) 08 January 2008 (has links)
Abstract In this thesis, iterative detection and estimation algorithms for digital communications systems in the presence of parametric uncertainty are explored and further developed. In particular, variational methods, which have been extensively applied in other research fields such as artificial intelligence and machine learning, are introduced and systematically used in deriving approximations to the optimal receivers in various channel conditions. The key idea behind the variational methods is to transform the problem of interest into an optimization problem via an introduction of extra degrees of freedom known as variational parameters. This is done so that, for fixed values of the free parameters, the transformed problem has a simple solution, solving approximately the original problem. The thesis contributes to the state of the art of advanced receiver design in a number of ways. These include the development of new theoretical and conceptual viewpoints of iterative turbo-processing receivers as well as a new set of practical joint estimation and detection algorithms. Central to the theoretical studies is to show that many of the known low-complexity turbo receivers, such as linear minimum mean square error (MMSE) soft-input soft-output (SISO) equalizers and demodulators that are based on the Bayesian expectation-maximization (BEM) algorithm, can be formulated as solutions to the variational optimization problem. This new approach not only provides new insights into the current designs and structural properties of the relevant receivers, but also suggests some improvements on them. In addition, SISO detection in multipath fading channels is considered with the aim of obtaining a new class of low-complexity adaptive SISOs. As a result, a novel, unified method is proposed and applied in order to derive recursive versions of the classical Baum-Welch algorithm and its Bayesian counterpart, referred to as the BEM algorithm. These formulations are shown to yield computationally attractive soft decision-directed (SDD) channel estimators for both deterministic and Rayleigh fading intersymbol interference (ISI) channels. Next, by modeling the multipath fading channel as a complex bandpass autoregressive (AR) process, it is shown that the statistical parameters of radio channels, such as frequency offset, Doppler spread, and power-delay profile, can be conveniently extracted from the estimated AR parameters which, in turn, may be conveniently derived via an EM algorithm. Such a joint estimator for all relevant radio channel parameters has a number of virtues, particularly its capability to perform equally well in a variety of channel conditions. Lastly, adaptive iterative detection in the presence of phase uncertainty is investigated. As a result, novel iterative joint Bayesian estimation and symbol a posteriori probability (APP) computation algorithms, based on the variational Bayesian method, are proposed for both constant-phase channel models and dynamic phase models, and their performance is evaluated via computer simulations.
4

Synchronization in all-digital QAM receivers

Pelet, Eric R. 30 April 2009
The recent advance in Field Programmable Gate Array (FPGA) technology has been largely embraced by the communication industry, which views this technology as an effective and economical alternative to the design of Application Specific Integrated Circuits (ASICs). The primary reasons for switching to FPGAs are lower development and non-recurring engineering costs, the flexibility to design to a preliminary standard and adapt the design as the standard evolves, as well as the option of performing software updates in the field.<p> A sector with strong interest in FPGAs is the coaxial cable TV/Internet distribution industry. The creation of soft preliminary standards by the standards organization governing the industry has been the main catalyst for the massive adoption of FPGAs by small to medium size companies, which see this technology as an opportunity to compete in this open market.<p> Both the circuit speed and the economy of FPGA technology depend upon using algorithms that map efficiently into its fabric. Often it is prudent to sacrifice performance to improve either clock speed or economy when developing with FPGAs. The purpose of this research is to both revise and devise synchronization algorithms / structures for cable digital receivers that are to be implemented in FPGA. <p> The main communication scheme used by the coaxial cable distribution industry is digital Quadrature Amplitude Modulation (QAM). The problem of synchronizing to the QAM signal in the receiver is not a new topic and several synchronization-related circuits, which were devised with ASICs implementation in mind, can be found in the open literature. Of interest in this thesis is the non-data-aided digital timing synchronizer that was proposed by D'Andrea to recover timing with no knowledge of the transmitted data. Accurate timing estimation was achieved by reshaping the received signal with a prefilter prior to estimating the timing. <p> A problem with D'Andrea's synchronizer is that the prefilter for reshaping the signal is a relatively long Finite Impulse Response (FIR) filter, whose implementation requires a large number of multipliers. This may not have been an issue with ASICs in as much as the number of hardwired multipliers on a chip is not limited as it is in an FPGA chip. One contribution in this research is to propose an alternative to D'Andrea's synchronizer by replacing the long FIR filter with two single-pole Infinite Impulse Response (IIR) filters that are directly placed inside the timing recovery loop. This novel architecture, which drastically reduces the number of multipliers, is well suited for FPGA implementation.<p> Non-data-aided feedforward synchronizers, which use the same prefilter as D'Andrea's synchronizer, have been receiving significant attention in recent years. Detailed performance analysis for these synchronizers can be found in the open literature. These synchronizers have the advantage of using a feedfordward structure rather than a feedback structure, as it is the case in D'Andrea's synchronizer, to estimate the timing. While D'Andrea's synchronizer has an advantage in performance over a non-data-aided feedforward synchronizer, this has not been reported in the literature. In this thesis a second contribution consists of thoroughly analyzing the steady state timing jitter in D'Andrea synchronizer by deriving a closed-form expression for the noise power spectrum and a simple equation to estimate the timing jitter variance. <p> A third contribution is a novel low-complexity and fast acquisition coherent detector for the detection of Quadrature Phase Shift Keying (QPSK) (i.e., 4-QAM) symbols. This detector performs carrier phase synchronization much faster than a conventional coherent detector. The acquisition time is comparable to that of a differential detector. The fast acquisition comes at the expense of phase jitter, and the end result is a 1 dB performance loss over theoretical coherent detection. This detector can be used in place of the differential detector with no economic penalty. Doing so yields a performance advantage of about 2 dB over differential detection.
5

Synchronization in all-digital QAM receivers

Pelet, Eric R. 30 April 2009 (has links)
The recent advance in Field Programmable Gate Array (FPGA) technology has been largely embraced by the communication industry, which views this technology as an effective and economical alternative to the design of Application Specific Integrated Circuits (ASICs). The primary reasons for switching to FPGAs are lower development and non-recurring engineering costs, the flexibility to design to a preliminary standard and adapt the design as the standard evolves, as well as the option of performing software updates in the field.<p> A sector with strong interest in FPGAs is the coaxial cable TV/Internet distribution industry. The creation of soft preliminary standards by the standards organization governing the industry has been the main catalyst for the massive adoption of FPGAs by small to medium size companies, which see this technology as an opportunity to compete in this open market.<p> Both the circuit speed and the economy of FPGA technology depend upon using algorithms that map efficiently into its fabric. Often it is prudent to sacrifice performance to improve either clock speed or economy when developing with FPGAs. The purpose of this research is to both revise and devise synchronization algorithms / structures for cable digital receivers that are to be implemented in FPGA. <p> The main communication scheme used by the coaxial cable distribution industry is digital Quadrature Amplitude Modulation (QAM). The problem of synchronizing to the QAM signal in the receiver is not a new topic and several synchronization-related circuits, which were devised with ASICs implementation in mind, can be found in the open literature. Of interest in this thesis is the non-data-aided digital timing synchronizer that was proposed by D'Andrea to recover timing with no knowledge of the transmitted data. Accurate timing estimation was achieved by reshaping the received signal with a prefilter prior to estimating the timing. <p> A problem with D'Andrea's synchronizer is that the prefilter for reshaping the signal is a relatively long Finite Impulse Response (FIR) filter, whose implementation requires a large number of multipliers. This may not have been an issue with ASICs in as much as the number of hardwired multipliers on a chip is not limited as it is in an FPGA chip. One contribution in this research is to propose an alternative to D'Andrea's synchronizer by replacing the long FIR filter with two single-pole Infinite Impulse Response (IIR) filters that are directly placed inside the timing recovery loop. This novel architecture, which drastically reduces the number of multipliers, is well suited for FPGA implementation.<p> Non-data-aided feedforward synchronizers, which use the same prefilter as D'Andrea's synchronizer, have been receiving significant attention in recent years. Detailed performance analysis for these synchronizers can be found in the open literature. These synchronizers have the advantage of using a feedfordward structure rather than a feedback structure, as it is the case in D'Andrea's synchronizer, to estimate the timing. While D'Andrea's synchronizer has an advantage in performance over a non-data-aided feedforward synchronizer, this has not been reported in the literature. In this thesis a second contribution consists of thoroughly analyzing the steady state timing jitter in D'Andrea synchronizer by deriving a closed-form expression for the noise power spectrum and a simple equation to estimate the timing jitter variance. <p> A third contribution is a novel low-complexity and fast acquisition coherent detector for the detection of Quadrature Phase Shift Keying (QPSK) (i.e., 4-QAM) symbols. This detector performs carrier phase synchronization much faster than a conventional coherent detector. The acquisition time is comparable to that of a differential detector. The fast acquisition comes at the expense of phase jitter, and the end result is a 1 dB performance loss over theoretical coherent detection. This detector can be used in place of the differential detector with no economic penalty. Doing so yields a performance advantage of about 2 dB over differential detection.
6

A comparison of frequency offset estimation methods in Orthogonal Frequency Division Multiplexing (OFDM) systems

Karaoglu, Bulent 12 1900 (has links)
Approved for public release; distribution in unlimited. / OFDM is a modulation technique that achieves high data rates, increased bandwidth efficiency and robustness in multipath environments. However, OFDM has some disadvantages, such as sensitivity to channel fading, large peak to average ratio and sensitivity to frequency offset. The latter causes intercarrier interference (ICI) and a reduction in the amplitude of the desired subcarrier which results in loss of orthogonality. In this thesis, the effects of frequency offset are studied in terms of loss of orthogonality. A number of techniques for frequency offset estimation are presented and tested in computer simulations. / Lieutenant Junior Grade, Turkish Navy
7

Timing Offset And Frequency Offset Estimation In An OFDM System

Prabhakar, A 07 1900 (has links) (PDF)
No description available.
8

Joint Frequency Offset And Channel Estimation

Avan, Muhammet 01 December 2008 (has links) (PDF)
In this thesis study, joint frequency offset and channel estimation methods for single-input single-output (SISO) systems are examined. The performance of maximum likelihood estimate of the parameters are studied for different training sequences. Conventionally training sequences are designed solely for the channel estimation purpose. We present a numerical comparison of different training sequences for the joint estimation problem. The performance comparisons are made in terms of mean square estimation error (MSE) versus SNR and MSE versus the total training energy metrics. A novel estimation scheme using complementary sequences have been proposed and compared with existing schemes. The proposed scheme presents a lower estimation error than the others in almost all numerical simulations. The thesis also includes an extension for the joint channel-frequency offset estimation problem to the multi-input multi-output systems and a brief discussion for multiple frequency offset case is also given.
9

Space-Time Coded ARTM CPM for Aeronautical Mobile Telemetry

Josephson, Chad Carl 11 November 2021 (has links)
This dissertation explores the application of Silvester's space-time block code to the multi-index CPM called "ARTM CPM" in the IRIG 106 standard to solve the "two antenna problem"---the use of two transmit antennas to provide full spatial coverage on an airborne test article and the accompanying self interference due to different delays between the two transmit antennas and the ground-based receive antenna. A symbol-level encoding scheme is derived that allows the burst-based space-time block code to operate in a continuously streaming mode. The results show that the space-time block code can solve the two antenna problem with differential delays, but that the differential delays generate a substantial increase in the computational complexity of the detector. Complexity-reducing techniques are applied and analyzed. The results show that the complexity reductions required to produce a practically realizable detector render the bit error probability performance sensitive to the differential delay. Numerical results are presented to quantify the performance loss due to the differential delay. The use of space-time coded ARTM CPM to solve the two-antenna problem in aeronautical mobile telemetry requires estimates of the parameters that define the propagation environment. The maximum likelihood estimator problem is defined and used to motivate reduced-complexity estimators suitable for use in a real system. A modified gradient descent algorithm performs the search required to find the delay parameters. An "inner" phase lock loop operating with an "outer" frequency lock loop computes decision-directed estimates of the frequency offset. Computer simulations were used to assess the impact on bit error rate performance introduced by the estimators. The simulation results show the combined joint estimator for the delays, channel gains, and frequency offset imposes a 1.15 dB loss in performance. This loss is approximately the same as the 1.1 dB loss due to the complexity-reducing techniques used by the decoder/detector.
10

Radio-Location Techniques for Localization and Monitoring Applications. A study of localisation techniques, using OFDM system under adverse channel conditions and radio frequency identification for object identification and movement tracking

Shuaieb, Wafa S.A. January 2018 (has links)
A wide range of services and applications become possible when accurate position information for a radio terminal is available. These include: location-based services; navigation; safety and security applications. The commercial, industrial and military value of radio-location is such that considerable research effort has been directed towards developing related technologies, using satellite, cellular or local area network infrastructures or stand-alone equipment. This work studies and investigates two location techniques. The first one presents an implementation scheme for a wideband transmission and direction finding system using OFDM multi-carrier communications systems. This approach takes advantage of delay discrimination to improve angle-of-arrival estimation in a multipath channel with high levels of additive white Gaussian noise. A new methodology is interpreted over the multi carrier modulation scheme in which the simulation results of the estimated channel improves the performance of OFDM signal by mitigating the effect of frequency offset synchronization to give error-free data at the receiver, good angle of arrival accuracy and improved SNR performance. The full system simulation to explore optimum values such as channel estimation and AoA including the antenna array model and prove the operational performance of the OFDM system as implemented in MATLAB. The second technique proposes a low cost-effective method of tracking and monitoring objects (examples: patient, device, medicine, document) by employing passive radio frequency identification (RFID) systems. A multi-tag, (totalling fifty-six tags) with known ID values are attached to the whole patient’s body to achieve better tracking and monitoring precision and higher accuracy. Several tests with different positions and movements are implemented on six patients. The aim is to be able to track the patient if he/she is walking or sitting; therefore, the tests considered six possible movements for the patient including walking, standing, sitting, resting, laying on the floor and laying on the bed, these placements are important to monitor the status of the patient like if he collapsed and fall on the ground so that the help will be quick. The collected data from the RFID Reader in terms of Time Stamp, RSS, Tag ID, and a number of channels are processed using the MATLAB code.

Page generated in 0.1386 seconds