• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BANDWIDTH-ENHANCEMENT DESIGNS OF SLOT-LOADED RECTANGULAR MICROSTRIP ANTENNAS

Sze, Jia-Yi 11 January 2001 (has links)
The bandwidth-enhancement characteristics of slot-loaded rectangular microstrip antennas constructed on a thin microwave substrate have been investigated in this dissertation. The primary design process about this topic is demonstrated. Firstly, a new antenna design idea is provided from pre-determined antenna design specifications or obtained antenna performances from the previous antenna design, which lead to a novel antenna configuration. From the results of the simulation software IE3DTM, the characteristics of this new antenna configuration are obtained and compared with the experimental results. The antenna configuration is also modified to achieve a final optimal design from the comparison results. The study of the single-feed dual-frequency rectangular microstrip antenna with a pair of bent slots is first presented. By embedding properly-designed slots on a rectangular microstrip patch, the impedance characteristics of this antenna design have been effectively changed to exhibit dual-resonant behavior, which result in the excitation of two adjacent resonant modes with similar radiation characteristics. Furthermore, the two resonant modes can be excited at frequencies very close to each other to form a wider operating bandwidth by embedding additional perturbation slots. Four successful antenna designs with different embedded-slot shapes for bandwidth enhancement have been implemented and discussed in this dissertation.
2

STUDIES OF DUAL-BAND AND BROADBAND PRINTED SLOT ANTENNAS

Chen, Wen-Shan 11 January 2001 (has links)
Novel designs of printed slot antennas have been investigated in this dissertation. For the linearly polarized designs, the study of single-feed dual-frequency printed slot antennas with an open-ring conducting strip is first presented. In addition, a novel design of dual-frequency dual-loop printed slot antenna is described. As for the broadband printed slot antenna designs, a printed semicircular slot antenna with a microstripline feed is shown. The impedance bandwidth obtained reaches about 46%. For the circularly polarized designs, we propose a circularly polarized microstrip antenna with an asymmetry of the antenna structure. By choosing a suitable meandered slot, CP operation can be obtained. Finally, we apply the design concept of CP operation using a shorted section to achieve a circularly polarized printed slot antenna design. The obtained CP bandwidth of this design is greater than 8%.
3

STUDIES OF BROADBAND PATCH ANTENNAS WITH AN AIR SUBSTRATE

Hsu, Wen-Hsiu 04 June 2001 (has links)
Novel broadband designs of patch antennas with an air substrate have been proposed in this dissertation. In the dual-frequency design, the study of single-fed dual-frequency microstrip antenna with a V-shaped slot has been first presented. As for the broadband patch antenna design, antennas with a U-shaped slot or a pair of wide slits can have an operating bandwidth more than 2.0 times that of a conventional one at a given operating frequency. The antenna bandwidth of then can be enhanced about 25%. In the designs of reducing cross-polarization, by using dual capacitive feeds with equal input powers, but with a 180¢X-phase shift, The cross-polarization radiation can be reduce about 10 to 15dB in the H-plane. Finally, A broadband shorted patch antenna fed by an aperture-coupled feed with an H-shaped coupling slot is proposed. By using an air substrate of thickness about 0.07 free-space wavelength of the center operating frequency, the proposed antenna can have an impedance bandwidth of about 26.2%. And the antenna design reduced the antenna size to be 40%~50%of the simple case.
4

Experimental and theoretical studies of atmospheric glow discharges

Shi, Jianjun January 2005 (has links)
This thesis presents the experimental and theoretical studies of nonthermal and stable atmospheric-pressure glow discharges. With the excitation frequency in the kilohertz range, a uniform and stable glow discharge has been successfully produced in atmospheric helium without the usually indispensable dielectric barrier. For this barrier-free cold atmospheric discharge, there are two discharge events occurring, respectively, in the voltage-rising and the voltage-falling phases, and in general they compete with each other. This distinct feature is illustrated through a detailed fluid simulation. For direct current atmospheric glow discharges, their cathode fall region is shown to depend critically on the discharge current density. For atmospheric glow discharges excited at 13.56 MHz on the other hand, we present observations that after gas breakdown, the discharge evolves from the normal glow mode to the abnormal glow mode and then through the recovery mode back to the normal glow mode. The operation modes, namely the a mode and the y mode, in radio-frequency atmospheric glow discharges are investigated with a one-dimensional, self-consistent continuum model. This model is evaluated by comparing our numerical results with experimental data and other simulation results in literature. It is shown that gas ionization is volumetric in the a mode and localized in the boundary region between the sheath and the bulk plasma in the y mode. The stable operation regime in the a mode is found to have a positive differential conductivity, and can be expanded to higher discharge current density without compensating plasma reactivity by increasing the excitation frequency. Furthermore this plasma stability-reactivity balance is also studied for radio-frequency atmospheric glow microdischarges.
5

Efficiency and Power Density Improvement of Grid-Connected Hybrid Renewable Energy Systems utilizing High Frequency-Based Power Converters

Amin, Mahmoud 30 March 2012 (has links)
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system’s high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
6

On the Control and Operation of Modular Multilevel Converters at Low Output Frequencies

Al Sabbagh, Muneer January 2019 (has links)
No description available.
7

Studies of Various Feeding Networks for Microstrip Antennas

Pan, Mon-Chun 19 June 2000 (has links)
The designs of various feeding networks for microstrip antennas have been investigated in this dissertation. In the active microstrip antenna designs, an amplifier-type microstrip antenna integrates a two- port amplifier circuitry to the various passive antennas through a 50£[ inset microstrip feed line which can function in broadband operation¡ACP operation and dual-frequency operation. As for the broadband circularly polarized microstrip antenna with a dual-perpendicular feed design, antenna with a dual-perpendicular feed which was formed by a Wilkinson power divider with a quarter-wavelength section of microstrip line for providing equal splitting of the input power and 90¢X phase difference to the two feed points has been presented. The broadband CP bandwidth can be achieved due to the good isolation between the two output lines of the feed network. In the microstrip antennas with CPW feed designs, we first proposed a microstrip antenna with three-dimensional CPW feed. A separate feed substrate is used which can provide a large-area space for the layout of complicated microwave circuitry. In addition, the feed substrate can also be oriented to the patch substrate with various angles, resulting in more flexibility in the proposed three-dimensional feed design. Finally, we proposed a design with two slot lines located at both sides of the coupling slot which can lengthen the excited patch surface current path, thus the resonant frequency is reduced and an antenna size reduction up to 40% has been obtained.
8

Novel Designs of Circular Microstrip Antennas

Jan, Jen-Yea 15 June 2000 (has links)
The novel designs of circular microstrip antennas have been investigated in this dissertation. In the linearly polarized designs, the study of single-feed dual-frequency circular microstrip antenna with an open-ring slot has been firstly presented. As for the broadband circular microstrip antenna designs, antennas with two open-ring slots, embedded reactive loading by probe feed and microstrip-line feed have been presented. The antenna bandwidth of them can be enhanced about 4% to 6%. In the circularly polarized designs, we have proposed a circularly polarized microstrip antenna with a spur line. By choosing a suitable length of the spur line, CP operation can be obtained. And then, such a design can be applied to a compact circular patch antenna with bent slots. These reduced the antenna size to be 40%~50% of that of the simple case. Finally, we use the ideas of CP operation with elliptic patch and dual-frequency operation with stacked patch to propose a dual-band circularly polarized stacked elliptic microstrip antenna design. The frequency ratio of this design is about 1.39.
9

High-Frequency Operation of Vertical Organic Field-Effect Transistors

Höppner, Marco, Kheradmand-Boroujeni, Bahman, Vahland, Jörn, Sawatzki, Michael Franz, Kneppe, David, Ellinger, Frank, Kleemann, Hans 21 May 2024 (has links)
The high-frequency and low-voltage operation of organic thin-film transistors (OTFTs) is a key requirement for the commercial success of flexible electronics. Significant progress has been achieved in this regard by several research groups highlighting the potential of OTFTs to operate at several tens or even above 100 MHz. However, technology maturity, including scalability, integrability, and device reliability, is another crucial point for the semiconductor industry to bring OTFT-based flexible electronics into mass production. These requirements are often not met by high-frequency OTFTs reported in the literature as unconventional processes, such as shadow-mask patterning or alignment with unrealistic tolerances for production, are used. Here, ultra-short channel vertical organic field-effect transistors (VOFETs) with a unity current gain cut-off frequency (fT) up to 43.2 MHz (or 4.4 MHz V−1) operating below 10 V are shown. Using state-of-the-art manufacturing techniques such as photolithography with reliable fabrication procedures, the integration of such devices down to the size of only 12 × 6 μm2 is shown, which is important for the adaption of this technology in high-density circuits (e.g., display driving). The intrinsic channel transconductance is analyzed and demonstrates that the frequencies up to 430 MHz can be reached if the parasitic electrode overlap is minimized.

Page generated in 0.082 seconds