• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Friction Element Welding of Ultra High Strength Steels to Aluminium Alloys

Vestberg, Hilda January 2022 (has links)
To address the concerns of simultaneously improving crash performance and fuel efficiency in the automotive industry, multi-material car bodies are becoming increasingly popular. Aluminium and steel are two materials whose properties complement each other well for this application. However, ultra-high strength steel (UHSS) and aluminium alloy is a hard-to-join material combination. In the last decades different solutions to this problem have been proposed, one of these being friction element welding (FEW). In this work, different UHSS have been joined to different aluminium alloys through the FEW equipment EJOWELD developed by EJOT. The joints have been evaluated though visual inspection, cross-section analysis, and mechanical tests. All materials could successfully be joined by the EJOWELD process.
2

Speed characteristics of urban streets based on driver behaviour studies and simulation

Aronsson, Karin F. M. January 2006 (has links)
The objective of the study was to gain in-depth knowledge of speed relationships for urban streets. The speed characteristics were examined using a number of methods for data collection. Throughout the research, a special focus was placed on capturing the influence on driver speed of interactions with pedestrians, cyclists and other road users, called sidefriction events in this study. First, driver behaviour and travel time data was collected from field and driving simulator studies for a range of street types and traffic conditions. The collected data was used to calibrate a microscopic traffic simulation model. Production runs with this model were performed for various traffic conditions. Second, aggregated speed data was collected at the link level, i.e. the macro level, for three street types. In combination with street site variables, speed and flow data was analysed using multiple regression techniques with space mean speed as dependent variable. This analysis was also performed for average travel speed data produced by microscopic traffic simulation. Two central results were attained and utilized for the model development: - In-depth knowledge of which factors influence speed choice on urban street links with minor intersections, on a micro and macro level. - A comprehensive research methodology for study of speed characteristics on urban streets in which the knowledge gained at the micro and macro level was applied. Results from the micro study showed that Average number of crossing pedestrians and Traffic flow had significant impact on average travel speed (R2=0.91). Results from the macro study performed for three street types showed that Street function and Number of lanes also had a high degree of explanation (R2 close to 0.70). The variables Separated bicycle lane, Roadside parking permitted and Number of minor intersections per 1 km were significant for some of the street types modelled in the macro study. The variables Ratio of through vehicles and Gender of the driver were also investigated and were found not to influence space-mean speed. The macro study demonstrated that speed choice and driver behaviour were consistent for each street type investigated regardless of city type and population size. The speed-flow relationships of the micro model for an urban street type showed good agreement with the macro model for traffic flows in the upper range. In conclusion, the research effort showed that the included side-friction variables added explanatory value to the estimation of speed, and thus can enhance the knowledge of traffic impacts of different urban street designs. / QC 20100630
3

Friction Bit Joining of Dissimilar Combinations of Advanced High-Strength Steel and Aluminum Alloys

Squires, Lile P. 10 June 2014 (has links) (PDF)
Friction bit joining (FBJ) is a new method that enables lightweight metal to be joined to advanced high-strength steels. Weight reduction through the use of advanced high-strength materials is necessary in the automotive industry, as well as other markets, where weight savings are increasingly emphasized in pursuit of fuel efficiency. The purpose of this research is twofold: (1) to understand the influence that process parameters such as bit design, material type and machine commands have on the consistency and strength of friction bit joints in dissimilar metal alloys; and (2) to pioneer machine and bit configurations that would aid commercial, automated application of the system. Rotary broaching was established as an effective bit production method, pointing towards cold heading and other forming methods in commercial production. Bit hardness equal to the base material was found to be highly critical for strong welds. Bit geometry was found to contribute significantly as well, with weld strength increasing with larger bit shaft diameter. Solid bit heads are also desirable from both a metallurgical and industry standpoint. Cutting features are necessary for flat welds and allow multiple material types to be joined to advanced high-strength steel. Parameters for driving the bit were established and relationships identified. Greater surface area of contact between the bit and the driver was shown to aid in weld consistency. Microstructure changes resulting from the weld process were characterized and showed a transition zone between the bit head and the bit shaft where bit hardness was significantly increased. This zone is frequently the location of fracture modes. Fatigue testing showed the ability of FBJ to resist constant stress cycles, with the joined aluminum failing prior to the FBJ fusion bond in all cases. Corrosion testing established the use of adhesive to be an effective method for reducing galvanic corrosion and also for protecting the weld from oxidation reactions.

Page generated in 0.1037 seconds