Spelling suggestions: "subject:"friction star spot well"" "subject:"friction star spot wild""
1 |
Localized Corrosion of FrictionStir Spot Welds in AZ31 Magnesium AlloysJames, Andre 04 July 2013 (has links)
A scanning reference electrode technique (SRET) apparatus has been designed and commissioned to investigate the corrosion of friction stir spot welds (FSSW) made in AZ31 magnesium alloys. The operational parameters of the apparatus have been calibrated to give good spatial resolution. By combining the SRET data with material flow data and immersion test data it was found that the FSSW process caused the formation of distinct noble and active regimes within the weld area. The noble region was aligned with the stir zone (SZ) and was caused by a dynamically recrystallized grain structure which is void of dislocations / twins, and β Mg17Al12. Localized corrosion attack was observed in both SRET and immersion testing along the thermo-mechanically affected zone (TMAZ). The same effect was consistently observed with a flat versus concave shoulder tool, and dwell times of 1s and 4s.
|
2 |
Localized Corrosion of FrictionStir Spot Welds in AZ31 Magnesium AlloysJames, Andre 04 July 2013 (has links)
A scanning reference electrode technique (SRET) apparatus has been designed and commissioned to investigate the corrosion of friction stir spot welds (FSSW) made in AZ31 magnesium alloys. The operational parameters of the apparatus have been calibrated to give good spatial resolution. By combining the SRET data with material flow data and immersion test data it was found that the FSSW process caused the formation of distinct noble and active regimes within the weld area. The noble region was aligned with the stir zone (SZ) and was caused by a dynamically recrystallized grain structure which is void of dislocations / twins, and β Mg17Al12. Localized corrosion attack was observed in both SRET and immersion testing along the thermo-mechanically affected zone (TMAZ). The same effect was consistently observed with a flat versus concave shoulder tool, and dwell times of 1s and 4s.
|
3 |
Refill Friction Stir Fastener Repair in AA7050-T7451Curtis, Andrew John 22 June 2023 (has links) (PDF)
The majority of Refill Friction Stir Spot Welding (RFSSW) is used to join two materials together oriented in a lap joint configuration. In this study, RFSSW was investigated and tested using an unconventional configuration setup, a hole/plug insertion approach. RFSSW was tested as a means of repairing a cracked rivet hole due to excessive use conditions. This was done by inserting a plug into a hole and using the RFSSW process to bond the plug to the base material. Machine and tool limits were investigated to determine if a refilled plug repair was possible and if complete mixing between plug/hole interface was attainable. Plug/hole homogenization was assessed via metallographic polishing of weld cross sections. Properties of the repaired aluminum alloy including both dynamic and and quasi-static tensile tests were also evaluated.
|
4 |
A Numerical Model of the Friction Stir PlungeMcBride, Stanford Wayne 17 April 2009 (has links) (PDF)
A Lagrangian finite-element model of the plunge phase of the friction stir welding process was developed to better understand the plunge. The effects of both modeling and experimental parameters were explored. Experimental friction stir plunges were made in AA 7075-T6 at a plunge rate of 0.724 mm/s with spindle speeds ranging from 400 to 800 rpm. Comparable plunges were modeled in Forge2005. Various simulation parameters were explored to assess the effect on temperature prediction. These included the heat transfer coefficient between the tool and workpiece (from 0 to 2000 W/m-K), mesh size (node counts from 1,200 to 8,000), and material model (five different constitutive relationships). Simulated and measured workpiece temperatures were compared to evaluate model quality. As spindle speed increases, there is a statistically significant increase in measured temperature. However, over the range of spindle speeds studied, this difference is only about 10% of the measured temperature increase. Both the model and the simulation show a similar influence of spindle speed on temperature. The tool-workpiece heat transfer coefficient has a minor influence (<25% temperature change) on simulated peak temperature. Mesh size has a moderate influence (<40% temperature change) on simulated peak temperature, but a mesh size of 3000 nodes is sufficient. The material model has a high influence (>60% temperature change) on simulated peak temperature. Overall, the simulated temperature rise error was reduced from 300% to 50%. It is believed that this can be best improved in the future by developing improved material models.
|
Page generated in 0.1059 seconds