• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feasibility studies on the friction stir welding of the multi-laminated silicon steel sheets

Lin, Jia-Shiang 22 August 2011 (has links)
A friction stir welding equipment with high rotation speed and constant load is successfully developed in this study to weld the multi-laminated silicon steel sheets widely used on regular transformers. This equipment consists of a spinning unit, a loading unit, and a feeding unit. A WC round rod with 3 mm diameter is used as welding tool. Under different operating conditions, such as the normal load(140~480 N), the spindle speed (12000~24000rpm), the feeding rate (0~1.58 mm/s), the welding characteristics and the welding mechanism of multi-laminated silicon steel sheets, and the welding feasibility of the transformer are investigated. Firstly, the contour map of welding depth in terms of spindle speed,normal load, and depth of point welding is established for dwell welding time 15 seconds. Secondly, based on this contour map, two experimental conditions of the long-pass welding tests are selected to investigate the effect of normal load (Fd), the spindle speed (Ns), and the feeding rate (f) on the failure load of weld under the shear. According to the experimental results, the empirical formula is obtained as Ff =40.6(Fd¡DNs)1.123(f)-0.791. In this formula,(Fd¡DNs)1.123(f)-0.791 is proportional to the frictional work per unit moving distance. With the larger frictional work, this represents the heat generation of the workpiece material is higher with more uniform friction stir, so that the bonding strength of the material increases and the failure load of weld is larger. According to the micrograph observations, the thermo-mechanically affected zone is significantly influenced by high heat action generated from the friction between the tool and the weld surface region, so that the plastic flow of the workpiece material occurs to cause the multi-laminated silicon steel sheets bonding together. Finally, the transformer is successfully welded under the experimental conditions of the long-pass welding tests with the smaller welding depth and the better failure load.
2

A Torque Based Power Input Model for Friction Stir Welding

Pew, Jefferson W. 07 December 2006 (has links) (PDF)
For decades models have been developed for predicting the size of the weld nugget and heat affected zones in fusion welded structures. The basis for these models is the welding heat input, which is fairly well understood for most arc welding processes. However, this traditional approach is not as straightforward for Friction Stir Welding (FSW). To date, there is no definitive relationship to quantify the heat input for FSW. An important step to establish a heat input model is to identify how FSW process parameters affect weld power. This study details the relationship between FSW process parameters and torque for three different aluminum alloys: 7075, 5083 and 2024. A quantitative weld power and heat input model is created from the torque input. The heat input model shows that decreasing the spindle speed or increasing the feed rate significantly decreases the heat input at low feed rates. At high feed rates, feed rate and spindle speed have little effect on the heat input. Process parameter versus heat input trends are verified by measurements of the weld heat affected zones. In addition, this study outlines and validates the use of a variable spindle speed test for determining torque over a broad range of parameters. The variable spindle speed test provided significant improvements over previous methods of determining torque as this new method enabled the torque to be modeled over a broad range of parameters using a minimum number of welds. The methods described in this study can be easily used to develop torque models for different alloys and materials.
3

A Numerical Model of the Friction Stir Plunge

McBride, Stanford Wayne 17 April 2009 (has links) (PDF)
A Lagrangian finite-element model of the plunge phase of the friction stir welding process was developed to better understand the plunge. The effects of both modeling and experimental parameters were explored. Experimental friction stir plunges were made in AA 7075-T6 at a plunge rate of 0.724 mm/s with spindle speeds ranging from 400 to 800 rpm. Comparable plunges were modeled in Forge2005. Various simulation parameters were explored to assess the effect on temperature prediction. These included the heat transfer coefficient between the tool and workpiece (from 0 to 2000 W/m-K), mesh size (node counts from 1,200 to 8,000), and material model (five different constitutive relationships). Simulated and measured workpiece temperatures were compared to evaluate model quality. As spindle speed increases, there is a statistically significant increase in measured temperature. However, over the range of spindle speeds studied, this difference is only about 10% of the measured temperature increase. Both the model and the simulation show a similar influence of spindle speed on temperature. The tool-workpiece heat transfer coefficient has a minor influence (<25% temperature change) on simulated peak temperature. Mesh size has a moderate influence (<40% temperature change) on simulated peak temperature, but a mesh size of 3000 nodes is sufficient. The material model has a high influence (>60% temperature change) on simulated peak temperature. Overall, the simulated temperature rise error was reduced from 300% to 50%. It is believed that this can be best improved in the future by developing improved material models.
4

Zlepšení výroby aeronautické součásti / Production improvement of an aeronautical part

Laforce, Francois January 2011 (has links)
Since aircrafts manufacturers intend to produce low consumption and efficient aircrafts, parts become more and more difficult to machine. Some processes like „air machining“ enables a one-step production for complex aluminium alloy shaped parts. Although the assembly offers a large access to cutting tool, the lack of stiffness for large parts, and especially for thin-walled aeronautics parts implies strong vibrations during machining. The aim of the study is to solve these difficulties in order to keep productivity and improve surface quality. Further innovative solutions are considered like modal analysis, in-phase machining, spindle speed variation, 3 flutes end mill and variable helix angle mill. All propositions are tested on DMG 65 machine tool with Siemens 840D controller. Although vibrations are intrinsic to flexible parts, surface quality has been improved with higher cutting continuity and variable helix angle cutting tool.

Page generated in 0.0614 seconds