• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 28
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Water-drag coefficients in the Beaufort Sea : AIDJEX 1975-76

LeBlanc, Alain, 1952- January 1981 (has links)
No description available.
22

Hydraulics of paddle wheels in high-rate algae ponds

Sacha Sethaputra. January 1981 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Civil Engineering, 1981 / Includes bibliographical references. / by Sacha Sethaputra. / M.S. / M.S. Massachusetts Institute of Technology, Department of Civil Engineering
23

Hazen-Williams C-factor assessment in an operational irrigation pipeline

Connell, David, 1974- January 2001 (has links)
In the spring of 1998, a closed end gravity flow pipeline was installed in the Lethbridge Northern Irrigation District. The pipes ranged from 900 mm to 300 mm in diameter. / Manholes were placed at several locations along the pipeline and were used to install velocity meters and pressure transducers, which recorded data every second. Pressures and velocities during periods of steady state were used to calculate the head loss, Re and the Hazen-Williams friction factor, "C", along lengths of constant diameter. / The results were compared to the industry design standard of C = 150 (used for the design of rigid PVC pipe installations) and to the theoretical hydraulically smooth line developed from the Moody diagram and the Darcy-Weisbach equation. Since the maximum and minimum calculated values of C came in the 750 mm and 900 mm diameter pipes, respectively, and all other C values, including those from the 300 mm and 650 mm diameters, fell between these, pipe diameter was assumed not to be a variable. Therefore all the field data was averaged. The average value of Re for the range studied was 9.73 x 105 . The corresponding best-fit C value is 147.7, which is 6.0% lower than the derived theoretical maximum. Since the derived theoretical maximum is the ideal condition and the recorded data was slightly lower and therefore determined be a good representation of what can be expected in true field conditions.
24

Mechanical Reduction of Frictional Resistance of Ninety-Degree PVC Conduit Elbows for Installation of Large Conductors

Jay, Disberger January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Fred L. Hasler / This paper presents the results of an experiment that was purposed with introducing the physical feasibility of a conceptual product that would mechanically reduce frictional resistance of schedule 40 PVC conduit elbows during the installation of large conductors. In the current construction industry, there is a well established and code driven convention for the construction of PVC conduit. For the installation of building service conductors, significant energy is required to pull conductors through the conduit. The service feed is the most expensive and restrictive pull on most projects strictly due the weight of the large conductors which are heavily resistant to deformation. The forces involved necessitate stringent requirements on maximum pull lengths and maximum degrees bent between pull boxes. Cost and risk of costly installation damage are also major characteristics of service feed pulls. The resistance to pulling and highest concentrations of internal forces throughout any conductor pull is located at the elbows or bends. This study is a scaled experimental-based initial establishment of expected evidence to support the feasibility of a product that would essentially reduce the required force to pull large conductors. This product is idealized as a factory PVC elbow that contains mechanical rollers along the inside face of the elbow where the conductors theoretically make the most contact during pulling. This product will ultimately be more expensive, but would be expected to benefit the project by reducing installation time, possibly reduce the number of pull boxes required, and reduce the risk of damaging conductors or conduits. The experiments described in this paper reflect a small-scale set that establishes trends of varying any one significant parameter for single conductor pulls through a single ninety-degree factory PVC elbow. While further research into multi-conductor feeders must be conducted in order to establish full justification for the product development was expected at the onset, the results of this study show that even further additional research must be conducted to resolve an ambiguity on which a definitive conclusion depends. Due to unforeseen or predicted parameters impacting the reduction of frictional resistance throughout the experimentation, the results both support and counter any benefit of applying mechanical means to reduce frictional resistance. The percentages of reduction range from -37% to +24% across the study’s results. The hypothesized sources of the ambiguity that counter expectations can only be verified by future studies. However, the evidence from this study can become definitively directional for the pursuit or lack there of for further investigating the benefits of the idealized product.
25

Static and Flow Properties of Dilute Polymer Solutions

Whang, Kyu-ho 08 1900 (has links)
Small weight percentages of certain high-molecular weight polymers added to liquids in turbulent flow through conduits can result in dramatic friction reduction. Although many current and potential uses of the drag reduction phenomenon exist, there is a fundamental problem: drag reduction efficacy decreases rapidly with flow time due to the mechanical degradation in flow of the added polymer. In this thesis study, dilute aqueous solutions of polyacrylamide were tested under turbulent flow conditions in an attempt to determine where mechanical degradation in flow occurs.
26

Siloxane-Polyurethane Fouling-Release Coatings Based On PDMS Macromers

Sommer, Stacy Ann January 2011 (has links)
Marine biofouling is the accumulation of organisms onto surfaces immersed in sea water. Fouling of ships causes an increase in hydrodynamic drag which leads to performance issues such as increased fuel consumption and a reduced top operating speed. Fouling-release (FR) coatings are one way that paints have been used in combating biofouling by allowing for the easy removal of settled organisms. Traditional FR coatings are silicone elastomers which are soft, easily damaged, and require a tie coat for adhesion to marine primers. Siloxanepolyurethane FR coatings have shown promise as FR coatings, providing enhanced durability and toughness, better adhesion to marine primers, and comparable FR performance to commercial coatings. Preliminary studies were conducted to explore the use of PDMS macromers in the preparation of siloxane-polyurethane FR coatings. Attachment and removal of fouling organisms on the siloxane-polyurethane coatings based on PDMS macromers was comparable to commercial FR coatings. Extended water aging was also carried out to determine effects of extended water immersion on the fouling-release performance of the coatings. At up to four weeks of aging, the FR performance of the coatings was not affected. Static immersion marine field testing was performed to determine the fouling-release performance of siloxane-polyurethane coatings prepared with PDMS macromers. The performance was found to be comparable to commercial FR coatings for up to one year, including water jet removal of slimes, barnacle push-off removal, and soft sponging. The coatings showed good fouling-release performance until extremely heavy fouling was allowed to settle. Underwater hull cleaning was conducted for one siloxane-polyurethane composition identified as a top performer from static field testing. The coating was easily cleaned of fouling with rotating brushes for six months. The cleaning capability of the coating was reduced when large barnacles and other extremely heavy fouling was present. A commercial FR coating became heavily damaged with brush cleaning while the siloxane-polyurethane coating remained mostly undamaged. With more frequent cleaning, it is suspected that siloxanepolyurethane coatings would show cleaning capability for longer periods of time. Pigmentation of siloxane-polyurethane coatings based on difunctional PDMS and PDMS macromers was explored to investigate the effect on FR performance. Pigmentation with titanium dioxide caused a slight decrease in FR performance in some cases, but this was easily overcome by the addition of slightly more PDMS in the coating binder, thus illustrating the feasibility of siloxane-polyurethane coatings as effective, pigmented FR coatings. Finally, the exploration of unique PDMS polymer architectures has been explored for the development of additional, novel, fouling-release coatings. The incorporation of end-functional PDMS homopolymer molecular brushes and branched PDMS macromers into siloxane-polyurethane fouling-release coatings shows promise for the development of unique coatings where improved FR performance may be obtained. / Office of Naval Research (U.S.)
27

Hazen-Williams C-factor assessment in an operational irrigation pipeline

Connell, David, 1974- January 2001 (has links)
No description available.
28

Analysis of Viscous Drag Reduction and Thermal Transport Effects for Microengineered Ultrahydrophobic Surfaces

Davies, Jason W. 16 March 2006 (has links) (PDF)
One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of micro-ribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the top surfaces of the ribs, and does not penetrate into the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For micro-ribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This thesis presents numerical results of a study exploring the momentum and thermal transport in a parallel plate microchannel with such microengineered walls. The liquid-vapor interface (meniscus) in the cavity regions is approximated as flat in the numerical analysis. Two conditions are explored with regard to the cavity region: 1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and 2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled through the velocity and shear stress matching at the interface. Predictions reveal that significant reductions in the frictional pressure drop (as large as 80%) can be achieved relative to the classical smooth channel Stokes flow. In general, reductions in the friction factor-Reynolds number product (fRe) are greater as the cavity-to-rib length ratio is increased (increasing shear-free fraction), as the relative module length (length of a rib-cavity module over the channel hydraulic diameter) is increased, as the Reynolds number decreases, and as the vapor cavity depth increases. The thermal transport results predict lower average Nusselt (Nu) numbers as the cavity-to-rib length ratio is increased (increasing shear-free fraction), as the relative module length (is increased, and as the Reynolds number decreases with little dependence on cavity depth. The ratio of Nu to fRe was evaluated to characterize the relative change in heat transfer with respect to the reduction in driving pressure. Results show that the benefits of reduction in driving pressure outweigh the cost of reduction in heat transfer at higher Reynolds numbers and narrower relative channel widths.
29

DYNAMIC FRICTIONAL RESPONSE OF GRANULAR MATERIALS UNDER SEISMICALLY RELEVANT CONDITIONS USING A NOVEL TORSIONAL KOLSKY BAR APPARATUS

Rodrigues, Binoy Johann 02 February 2018 (has links)
No description available.
30

The design of skin friction gages for measurements in high-speed, short-duration flows

Busic, John F. 06 October 2009 (has links)
The design of skin friction gages has been explored analytically and experimentally for measuring skin friction in high-speed, short-duration flow. Several gage designs were considered. One promising gage design used a floating element, while another was microfabricated using sputtering techniques. All of the gages were physically modeled to determine the output caused by Mach 2 unheated flow. Frequency response analysis was also performed on the floating element and sputtered design to determine their ability to make measurements in the millisecond time range. Temperature and normal pressure effects were a source of measurement error, and techniques were developed for minimizing the error due these effects. Tests were made in Mach 2 flow and the results of these tests are discussed. Recommendations are provided as to how the gages can be improved for further testing. / Master of Science

Page generated in 0.098 seconds