1 |
Flexural performance of concrete beams reinforced with steel–FRP composite barsGe, W., Wang, Y., Ashour, Ashraf, Lu, W., Cao, D. 02 May 2020 (has links)
Yes / Flexural performance of concrete beams reinforced with steel–FRP composite bar (SFCB) was investigated in this paper. Eight concrete beams reinforced with different bar types, namely one specimen reinforced with steel bars, one with fiber-reinforced polymer (FRP) bars and four with SFCBs, while the last two with hybrid FRP/steel bars, were tested to failure. Test results showed that SFCB/hybrid reinforced specimens exhibited improved stiffness, reduced crack width and larger bending capacity compared with FRP-reinforced specimen. According to compatibility of strains, materials’ constitutive relationships and equilibrium of forces, two balanced situations, three different failure modes and balanced reinforcement ratios as well as analytical technique for predicting the whole loading process are developed. Simplified formulas for effective moment of inertia and crack width are also proposed. The predicted results are closely correlated with the test results, confirming the validity of the proposed formulas for practical use. / National Natural Science Foundation of China (51678514), China Postdoctoral Science Foundation (2018M642335), the Science and Technology Project of Jiangsu Construction System (2018ZD047), the Cooperative Education Project of Ministry of Education, China (201901273053), the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province (2020), the Six Talent Peaks Project of Jiangsu Province (JZ038, 2016) and the Yangzhou University Top Talents Support Project
|
2 |
Eccentric compression behavior of Steel-FRP composite bars RC columns under coupling action of chloride corrosion and loadGe, W., Zhang, S., Zhang, Z., Guan, Z., Ashour, Ashraf, Sun, C., Lu, W., Cao, D. 02 November 2023 (has links)
No / In order to investigate the eccentric compression behaviors of steel-FRP composite bar (SFCB) reinforced concrete (RC) columns subjected to chloride corrosion, the mechanical experiments of chloride corroded SFCBs and SFCBs RC eccentric compression columns were conducted. The effect of reinforcement type and ratio, eccentricity, slenderness, stress level and corrosion duration on bearing capacity, deformation, crack and failure pattern were investigated. The results showed that the strength retention ratio of reinforcement decreases with the increase of corrosion duration, the ultimate strengths of steel rebar, SFCB and FRP rebar decreased by 12.2%, 9.9% and 3.6%, respectively, when compared with those of uncorroded counterparts. With the increase of steel content of reinforcement, the load bearing capacity of eccentric compression RC column increases while the deformation decreases gradually. The load bearing capacity of corroded steel, SFCB and FRP RC columns maximally decreased by 16.6%, 12.4% and 7.2%, respectively, when compared with those of uncorroded counterparts. Based on the simplified materials constitutive relations and reasonable basic assumptions, formulae for discriminate failure mode, moment magnification factor and bearing capacity were developed. The predicted failure pattern, moment magnification factor and bearing capacity are in good agreement with the test results, confirming the validity of the proposed formulae, the results can be used as a reference for engineering application. / High-End Foreign Experts Project of Ministry of Science and Technology, China (G2022014054L), the Natural Science Foundation of Jiangsu Province, China (BK20201436), the Science and Technology Project of Jiangsu Construction System (2018ZD047, 2021ZD06), the Science and Technology Project of Gansu Construction System (JK2021-19), the Opening Foundation of Jiangsu Province Engineering Research Center of PrefabricatedBuilding and Intelligent Construction (2021), the Science and Technology Cooperation Fund Project of Yangzhou City and Yangzhou University (YZ2022194, YZU212105), the Science and Technology Project of Yangzhou Construction System (2022ZD03, 202204), the Nantong Jianghai (226) talents project, the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province (2020).
|
3 |
Eccentric compression behaviour of concrete columns reinforced with steel-FRP composite barsGe, W., Chen, K., Guan, Z., Ashour, Ashraf, Lu, W., Cao, D. 19 March 2021 (has links)
Yes / Eccentric compression behaviour of reinforced concrete (RC) columns reinforced by steel-FRP composite bars
(SFCBs) was investigated through experimental work and theoretical analyses. The tension and compression test results
show that SFCBs demonstrate a stable post-yield stiffness. The mechanical properties of the composite reinforcement
have a significant influence on eccentric compression behaviour of the reinforced concrete columns, in terms of failure
mode, crack width, deformation and bearing capacity. Formulae were also developed to discriminate failure mode and to
determine moment magnification factor, bearing capacity and crack width of the columns studied, with the theoretical
predictions being in a good agreement with the experimental results. In addition, parametric studies were conducted to
evaluate the effects of mechanical properties of reinforcement, reinforcement ratio, eccentricity, slenderness ratio, types of
reinforcement and concrete on the eccentric compression behaviour of RC columns. The results show that the
compressive performance is significantly improved by using the high performance concrete, i.e. reactive powder concrete
(RPC) and engineered cementious composites (ECC). / financial supports of the work by the National Natural Science Foundation of China (51678514), the Natural Science Foundation of Jiangsu Province, China (BK20201436), the China Postdoctoral Science Foundation (2018M642335), the Science and Technology Project of Jiangsu Construction System (2018ZD047), the Deputy General Manager Science and Technology Project of Jiangsu Province (FZ20200869), the Cooperative Education Project of Ministry of Education, China (201901273053), the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province (2020), the Six Talent Peaks Project of Jiangsu Province (JZ-038, 2016), the Yangzhou University Top Talents Support Project and the Jiangsu Government Scholarship for Overseas Studies.
|
4 |
Effect of chloride corrosion on eccentric compression response of concrete columns reinforced with steel-FRP composite barsGe, W.-J., Zhu, J.-W., Ashour, Ashraf, Yang, Z.-P., Cai, X.-N., Yao, S., Yan, W.-H., Cao, D.-F., Lu, W.-G. 14 April 2022 (has links)
Yes / This paper presents test results of eccentrically loaded concrete columns reinforced with steel-fibre-reinforced polymer (FRP) composite bars (SFCBs) subjected to chloride corrosion. The first stage of the experimental work explored the tensile and compressive tests of various reinforcements (SFCBs with different cross section, steel and FRP bars) used in the large reinforced concrete (RC) columns after chloride corrosion with or without sustained stresses. The results showed that the tensile and compressive stress-strain relationships of SFCBs are characterised by stable secondary (post-yield) stiffness. The second stage of the testing investigated the structural performance of RC columns with various amounts and types of reinforcements, slenderness ratio, applied load eccentricity and chloride corrosion rate. The results showed that the effect of reinforcements on eccentric compression behaviour is significant. The deformation and crack width of SFCB RC columns, respectively, decreased by 12.2%~52.6% and 8.5%~71.0%, while the load capacity improved by 0.9%~18.8%, when compared with the corresponding FRP RC columns having the same eccentricity and reinforcement ratio. The use of SFCBs as the reinforcement of RC columns, especially with high reinforcement ratio or SFCBs having high area ratio of inner steel to SFCB, is beneficial to reduce the deflection and crack width as well as improve the bearing capacity utilization coefficients under serviceability limit state.
|
5 |
Flexural behavior of UHPC beam reinforced with steel-FRP composite barsAbbas, E.M.A., Ge, Y., Zhang, Z., Chen, Y., Ashour, Ashraf, Ge, W., Tang, R., Yang, Z., Khailah, E.Y., Yao, S., Sun, C. 02 November 2023 (has links)
Yes / This paper numerically investigates flexural performance of Ultra-High Performance Concrete (UHPC) beam reinforced with Steel-Fibre-Reinforced Polymer (FRP) Composite Bars (SFCBs) in terms of flexural stiffness, moment capacity, deflection, ductility and energy dissipation. The effect of various parameters, include the inner steel core area ratio of SFCB, yield strength of inner steel core, elastic modulus and ultimate strength of outer-wrapped FRP, reinforcement ratio, type and strength of concrete were studied. The results demonstrate that the inner steel core area ratio of SFCB, reinforcement ratio and the elastic modulus of SFCB's outer FRP have significant effect on the overall flexural performance of SFCB reinforced UHPC beam. The overall flexural performance of SFCB reinforced UHPC beam is slightly improved by increasing the yield strength of inner steel core of SFCB, but not affected by the ultimate strength of SFCB's outer FRP when specimen occurred compression failure. The results also exhibit that the flexural performance of UHPC beam reinforced with SFCBs is significantly improved when compared to those of reinforced high strength concrete (HSC) beam and normal strength concrete (NSC) beam. The flexural stiffness and the moment capacity of SFCB reinforced UHPC beam at the ultimate point were 2.0 and 2.4 times, respectively, of those of reinforced NSC counterpart. / Natural Science Foundation of Jiangsu Province, China (BK20201436), the China Postdoctoral Science Foundation (2018M642335), the Science and Technology Project of Jiangsu Construction System, China (2018ZD047, 2021ZD06), the Science and Technology Project of Gansu Construction System, China (JK2021-19), the National Natural Science Foundation of China (51678514), the Science and Technology Innovation Fund of Yangzhou University, China (2020-65), the Open Foundation of Jiangsu Province Engineering Research Center of Prefabricated Building and Intelligent Construction, China (2021), the Science and Technology Cooperation Fund Project of Yangzhou City and Yangzhou University, China (YZU212105), the Practice and Innovation Plan for Postgraduates in Jiangsu Province, China (SJCX21_1589), the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province, China (2020) and the Deputy General Manager Science and Technology Project of Jiangsu Province, China (FZ20200869). References
|
6 |
Parametric analysis on flexural performance of reactive powder concrete frame beams reinforced with steel-FRP composite barsGe, W., Zhang, F., Sushant, S., Yao, S., Ashour, Ashraf, Luo, L., Jiang, H., Zhang, Z. 24 January 2024 (has links)
Yes / To study the flexural behavior of Steel-FRP (Fiber-Reinforced Polymer) Composite Bars (SFCBs) reinforced Reactive Powder Concrete (RPC) frame beams, the flexural behavior of six frame beams with different types of concrete and reinforcement was simulated and analyzed using the finite element software ABAQUS. The strain behavior of concrete and reinforcement was simulated using real strain models, and the simulation results matched well with the experimental results. Based on the validated model, the effect of mechanical properties of concrete and SFCB, reinforcement ratio, and the dimensions of frame beam on the flexural behavior of frame beams was parametrically analyzed. The results showed that, compared with the steel-reinforced ordinary concrete (OC) frame beam, the ultimate deflection of SFCB-OC frame beam increased by 5%. Compared with the SFCB-OC frame beam, the bearing capacity and ultimate deflection of the SFCB-RPC frame beam increased by 16% and 22%, respectively. Improving the steel content of SFCB reduced the ultimate load and deformation of SFCB-RPC frame beam. The yield strength of SFCB core steel had a significant influence on the yield load of frame beam, but a small influence on the ultimate load and deformation. Enhancing the elastic modulus of SFCB out-wrapped FRP reduced the ultimate deformation of the frame beam. Improving the reinforcement ratio of SFCB increased the bearing capacity and reduced the deformation. When reinforced concrete frame beams had similar bearing capacity, the cross-sectional dimensions of steel-RPC frame beam, FRP-RPC frame beam, and SFCB-RPC frame beam are 90.1%, 61.5%, and 72.7%, respectively, of those of their corresponding respective reinforced OC frame beams. All reinforced RPC frame beams exhibited high bearing capacity, good deformation, ductility, and energy dissipation performance. This research can provide a reference for the design of SFCB-RPC frame beams. / High-End Foreign Experts Project of Ministry of Science and Technology, China (G2022014054L), the Science and Technology Project of Gansu Construction System (JK2021-19), the Science and Technology Project of Jiangsu Construction System (2018ZD047, 2021ZD06, 2023ZD104, 2023ZD105), the Science and Technology Cooperation Fund Project of Yangzhou City and Yangzhou University (YZ2022194), the Yangzhou Construction System Science and Technology Project (202309, 202312), the Research Project of Jiangsu Civil Engineering and Architecture Society (the Second Half of 2022). / The full-text of this article will be released for public view at the end of the publisher embargo on 27 Jan 2025.
|
7 |
Structural monitoring with fibre-optic sensors using the pulsed time-of-flight method and other measurement techniquesLyöri, V. (Veijo) 22 December 2007 (has links)
Abstract
This thesis deals with the developing of fibre-optic instruments for monitoring the health of civil engineering and composite structures. A number of sensors have been tested for use with different road structures, concrete bridges, fibre reinforced polymer (FRP) containers and other composite specimens, the interrogation methods being mainly based on measuring optical power and time-of-flight (TOF). The main focus is on the development of a fibre-optic TOF measurement system and its applications, but different sensing needs and fibre-optic measurement systems are also reviewed, with the emphasis on commercial devices.
Deformation in a road structure was studied with microbending sensors of gauge-length about 10 cm and a commercial optical time domain reflectometer (OTDR) in a quasi-distributed fashion. The responses of the optical fibre sensors during the one-year measurement period were similar in shape to those obtained with commercial strain gauges but the absolute measurement values typically deviated by several tens of per cent. Low dynamic range, crosstalk and poor signal-to-noise ratio proved to be the main problem when measuring several successive sensors with an OTDR. In another road investigation, microbending and speckle sensors were found useful for providing on/off-type information for traffic control applications.
FRP composite containers were investigated with the focus on developing a continuous monitoring system for improving yield and quality by evaluating the state of cure during the manufacturing process and for assessing damage, e.g. delaminations, during service life. Standard multi-mode and single mode fibres with a typical length of a few hundreds of metres were embedded inside the walls of containers during the normal manufacturing process, and the measurements were carried out using an optical through-power technique and an OTDR. This largely empirical investigation revealed that the coating material and its thickness have an effect on loading sensitivity and on the applicability of the method for cure monitoring. The measurement data also indicated that the end-of-curing process and the location of external damage can be determined with a distributed optical fibre sensor and an OTDR.
Several versions of a pulsed time-of-flight measurement system were developed for interrogating sensor arrays consisting of multiple long gauge-length sensors. The early versions based on commercial electronics were capable of producing relevant measurement data with a reasonable precision, but they suffered especially from poor spatial resolution, low sampling rate and long-term drift.
The high precision TOF system developed in this thesis is capable of measuring time delays between a number of wideband reflectors, such as connectors or fibre Bragg gratings (FBG), along a fibre path with a precision of about 280 fs (rms-value) and a spatial resolution of about 3 ns (0.30 m) in a measurement time of 25 milliseconds. By using a fibre loop sensor with a reference fibre, a strain precision below 1 με and a measurement frequency of 4 Hz can be achieved. The system has proved comparable in performance to a commercial FBG interrogation system in monitoring the behaviour of a bridge deck, while the fact that it allows static and dynamic measurements with a number of long gauge-length sensors, also embedded in FRP composite material, makes this TOF device unique relative to other measurement systems.
|
8 |
Progresivní styčníky FRP kompozitů konstrukcí dopravní infrastruktury / Joints from FRP composite intended for transport infrastructureSimon, Pavel January 2018 (has links)
This thesis deals with junction points of construction used in transport infrastructure, which are made of FRP composite material. Main focus is on bonded joints. The material and geometrical criteria od FRP material and there influence to junctions are analyzed. In sequential steps the development of the design of joints applicable to reference constructions - pedestrian walkways is documented. There are also presented practical experiences from the tests of joints of overlapped and single-sided joints, as well as experience from the design, production and testing of two types of pedestrian bridges on a real scale. Furthermore, extensive comparison of joints, in particular T-joints with closed profiles for selected types of fasteners, is provided. From a simple connection, screws and rivets or plain bonding to combined joints. These are assessed both in terms of bearing capacity and their deformation behavior. These tests are performed for two material combinations, FRP-FRP and FRP-steel.
|
9 |
Vlastnosti kompozitů s polymerní matricí a dlouhovláknovou výztuží / Use of FRP Composites as Reinforcing Material for ConcreteKratochvílová, Denisa January 2019 (has links)
Because FRP composites have high fiber strength and good durability, they are increasingly used for repairs, modernisation and reconstruction of concrete structures. In practice, however there is a risk of premature separation of FRP reinforcement from concrete. This can be avoided by appropriate selecting the fibers and the matrix and the appropriate shape of the reinforcement. The actual materials and consistency of FRP reinforcement with concrete are also covered by this diploma thesis.
|
10 |
Studium vlastností FRP kompozitních materiálů pro vyztužování betonu / Study of FRP for concrete reinforcementBlahová, Aneta January 2022 (has links)
The diploma thesis aims to analyze bent FRP reinforcements. It describes the method of production of bent FRP reinforcement, examples of application of FRR reinforcement in structures and mentions aggressive influences influencing the durability of FRP reinforcement. Furthermore, an experiment is proposed to monitor changes in straight and bent FRP reinforcement stored in an aqueous environment at 20 °C and an alkaline environment at 20 °C and 40 °C. The output of the diploma thesis is the evaluation of changes in mechanical properties and durability. The condition of the FRP reinforcement is documented using optical and electron mocroscopy.
|
Page generated in 0.0679 seconds