• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The evolution of fruit traits in Coprosma and the subtribe Coprosminae

Markey, Adrienne Selina, n/a January 2006 (has links)
The flora of New Zealand has evolved largely in the absence of terrestrial mammals, the predominant frugivore guilds being birds and reptiles. The evolution of divergent fruit traits in New Zealand may be a consequence of different selection pressure by these two guilds, and two contrasting putative dispersal syndromes have been proposed for New Zealand fleshy fruited plants. Coprosma (Rubiaceae: subtribe Coprosminae) is a speciose and morphologically diverse genus, which is distributed throughout the South Pacific and which also produces variably coloured drupes. It was selected as a model genus to investigate the evolution of fruit traits within this context. For this purpose, a molecular phylogeny for the subtribe Coprosminae and Coprosma was inferred using parsimony, likelihood and split decomposition analysis on sequences from the 16rps intron of cpDNA and ETS and ITS region of nrDNA. Up to 32 species were included in the subtribal analyses, whilst 53 species of Coprosma were used in subgeneric studies. The basis for the variety of fruit colours seen in New Zealand was determined using histology and pigment extractions. To test the assumption that fruit traits among species evolved in concert under selection from frugivore guilds, fruit shape, size and nutrient composition were determined in order to test predictions that these would co-vary with fruit colour. In the Coprosminae, fleshy drupes have arisen from dry fruited schizocarps and with two possible reversals to semi-dry drupes. Within Coprosma, fruit colour was found to be evolutionarily labile and varied both among and within lineages, particularly within two main groups where fruit colour had shifted from orange to blue and white, or red, pink and black colours respectively. The evolution of novel (non-orange) fruit colours was restricted to New Zealand, as was the small-leaved, divaricate growth form, the combination of which has been associated with a putative reptile dispersal syndrome. Several trans-oceanic dispersals out of New Zealand were also inferred from the phylogeny, these extending into Australia, New Guinea and Hawai�i. In these instances, fruit colour did not appear change markedly after establishment in a new country. Within New Zealand, fruit sizes were found to vary with colour as predicted, although the majority of species produced small (< 8 mm), elliptical fruits. There was no clear association between fruit colour and fruit nutrient composition. It would appear that these small, succulent, carbohydrate-rich and lipid-poor fruits cater to a wide range of generalist frugivores. The variety of fruit colours in Coprosma stemmed from qualitative and quantitative differences in carotenoid and anthocyanin composition. The genetic basis for the control of these pathways is currently unknown, but it is assumed that a few regulatory genes can control a substantial amount of phenotypic variation. Considering the evolutionary history of Coprosma, it would appear that a history of recent and rapid speciation, hybridisation and reticulate evolution may have increased the tempo of fruit colour evolution in the genus.
2

The evolution of fruit traits in Coprosma and the subtribe Coprosminae

Markey, Adrienne Selina, n/a January 2006 (has links)
The flora of New Zealand has evolved largely in the absence of terrestrial mammals, the predominant frugivore guilds being birds and reptiles. The evolution of divergent fruit traits in New Zealand may be a consequence of different selection pressure by these two guilds, and two contrasting putative dispersal syndromes have been proposed for New Zealand fleshy fruited plants. Coprosma (Rubiaceae: subtribe Coprosminae) is a speciose and morphologically diverse genus, which is distributed throughout the South Pacific and which also produces variably coloured drupes. It was selected as a model genus to investigate the evolution of fruit traits within this context. For this purpose, a molecular phylogeny for the subtribe Coprosminae and Coprosma was inferred using parsimony, likelihood and split decomposition analysis on sequences from the 16rps intron of cpDNA and ETS and ITS region of nrDNA. Up to 32 species were included in the subtribal analyses, whilst 53 species of Coprosma were used in subgeneric studies. The basis for the variety of fruit colours seen in New Zealand was determined using histology and pigment extractions. To test the assumption that fruit traits among species evolved in concert under selection from frugivore guilds, fruit shape, size and nutrient composition were determined in order to test predictions that these would co-vary with fruit colour. In the Coprosminae, fleshy drupes have arisen from dry fruited schizocarps and with two possible reversals to semi-dry drupes. Within Coprosma, fruit colour was found to be evolutionarily labile and varied both among and within lineages, particularly within two main groups where fruit colour had shifted from orange to blue and white, or red, pink and black colours respectively. The evolution of novel (non-orange) fruit colours was restricted to New Zealand, as was the small-leaved, divaricate growth form, the combination of which has been associated with a putative reptile dispersal syndrome. Several trans-oceanic dispersals out of New Zealand were also inferred from the phylogeny, these extending into Australia, New Guinea and Hawai�i. In these instances, fruit colour did not appear change markedly after establishment in a new country. Within New Zealand, fruit sizes were found to vary with colour as predicted, although the majority of species produced small (< 8 mm), elliptical fruits. There was no clear association between fruit colour and fruit nutrient composition. It would appear that these small, succulent, carbohydrate-rich and lipid-poor fruits cater to a wide range of generalist frugivores. The variety of fruit colours in Coprosma stemmed from qualitative and quantitative differences in carotenoid and anthocyanin composition. The genetic basis for the control of these pathways is currently unknown, but it is assumed that a few regulatory genes can control a substantial amount of phenotypic variation. Considering the evolutionary history of Coprosma, it would appear that a history of recent and rapid speciation, hybridisation and reticulate evolution may have increased the tempo of fruit colour evolution in the genus.
3

Towards a novel fruit crop : Micropropagation and genetic transformation of the indigenous fruit tree marula, Sclerocarya birrea subsp.caffra

Mollel, Margaret Huruma Naftali 04 1900 (has links)
Thesis ( PhD. (Biotechnology )) --University of Limpopo, 2005 / The marula tree (Sclerocarya birrea subsp. caffra), an indigenous, multipurpose, drought tolerant tree of Africa harbors great economic potential. Acceptance of marula-derived products internationally will directly increase the demand for marula resource. Rapid multiplication of marula trees of superior quality forms the basis of sustainable export growth. In vitro propagation and genetic improvement offer the opportunity for accelerated multiplication of selected tree material as well as to dramatically increase production, quality and efficiencies. The objectives of the study were therefore to develop a protocol for in vitro multiplication of marula and to determine the feasibility of Agrobacterium-mediated transformation of the marula tree. Nodal sections with axillary bud (s) were cultured on Murashige and Skoog (MS) medium supplemented with 4.8μM BA and 2.4μM KN and 0.1% polyvinylpyrrolidone (PVP) to obtain on average 2.5 microshoots per responding explant. The proliferated microshoots were elongated on MS medium supplemented with 1.2μM BA and 1.0μM KN. Elongated microshoots were rooted in MS medium at half salts strength supplemented with 10μM IBA and 0.3% activated charcoal (AC). On average 82% of the shoots rooted. Survival of acclimatized plantlets was 90%. RAPD analysis confirmed intraclonal genetic stability between parent plants and their clones within the limits of the technique.Nodal sections cocultivated with Agrobacterium tumefaciens for 3 days on MS multiplication medium supplemented with 100μM acetosyringone resulted on average in transient expression of 52.5% of the explants with 1.6 blue stained zones per explant. Cocultivated explants on MS selection medium containing 300mgl-1 kanamycin resulted in 1.5% chimeric putative transgenic shoots. This is the first report on the micropropagation and genetic transformation of marula, Sclerocarya birrea subsp caffra. / South Africa’s National Research Foundation Institutional Research Development Program (NRF-IRDP)

Page generated in 0.0718 seconds