• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2407
  • 779
  • 310
  • 248
  • 172
  • 84
  • 64
  • 52
  • 48
  • 46
  • 28
  • 27
  • 23
  • 22
  • 7
  • Tagged with
  • 5649
  • 1311
  • 1252
  • 925
  • 731
  • 521
  • 520
  • 496
  • 461
  • 439
  • 421
  • 415
  • 369
  • 362
  • 328
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Performance Characterization of Complex Fuel Port Geometries for Hybrid Rocket Fuel Grains

Bath, Andrew 01 December 2012 (has links)
This research investigated the 3D printing and burning of fuel grains with complex geometry and the development of software capable of modeling and predicting the regression of a cross-section of these complex fuel grains. The software developed did predict the geometry to a fair degree of accuracy, especially when enhanced corner rounding was turned on. The model does have some drawbacks, notably being relatively slow, and does not perfectly predict the regression. If corner rounding is turned off, however, the model does become much faster; although less accurate, this method does still predict a relatively accurate resulting burn geometry, and is fast enough to be used for performance-tuning or genetic algorithms. In addition to the modeling method, preliminary investigations into the burning behavior of fuel grains with a helical flow path were performed. The helix fuel grains have a regression rate of nearly 3 times that of any other fuel grain geometry, primarily due to the enhancement of the friction coefficient between the flow and flow path.
252

Conductivity and microstructural characterisation of doped Zirconia-Ceria and Lanthanum Gallate electrolytes for the intermediate-temperature, solid oxide fuel cell

Kimpton, Justin Andrew, jkimpton@physics.unimelb.edu.au January 2002 (has links)
Lowering the operating temperature of the high-temperature, solid oxide fuel cell (SOFC) improves both the thermodynamic efficiency and the lifetime of this energy efficient technology. Unfortunately the rate of oxygen-ion transport through the solid electrolyte is temperature dependent, and materials previously employed as electrolytes in the high-temperature SOFC perform poorly at intermediate temperatures. Therefore new oxygen-ion conductors with enhanced ionic conductivity at intermediate temperatures are required. The bulk of the existing literature on high-temperature SOFCs has focussed on zirconia-based binary systems as electrolytes, due to their high ionic conductivity and negligible electronic conductivity. Only select compositions within the zirconia-scandia system have demonstrated acceptable ionic conductivity levels at intermediate temperatures; however unstable phase assemblage and the high economic cost of scandia are clear disadvantages. Ceria-based binary systems have demonstrated improved oxygen-ion conductivity at intermediate temperature compared to many zirconia systems, however significant levels of n-type electronic conductivity are observed at low oxygen partial pressures. Consequently it was thought unlikely that significant increases in ionic conductivity would be found in existing zirconia- and ceria-based binary systems, therefore another approach was required in an attempt to improve the performance of these established fluorite systems. The fluorite systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc) were prepared and investigated as possible, intermediate-temperature SOFC electrolytes in an attempt to combine the higher conductivity found in the ceria systems with the low electronic conductivity observed in the zirconia systems. Also it was anticipated that systems containing dopants not previously observed to confer high ionic conductivity in either zirconia- and ceria-based binary systems, might exhibit enhanced ionic conductivity with expansion of the zirconia lattice resulting from the addition of ceria. All the as-fired Zr0.75Ce0.08M0.17O1.92 compositions possessed the face-centred cubic structure and lattice parameter measurements revealed the anticipated unit cell enlargement as the size of the dopant cation increased. No unusual microstructural parameters were identified that could be expected to interfere with the ionic transport properties in the as-fired compositions. The electrical conductivity was found to be influenced by the dopant-ion radius, the presence of ceria, low oxygen partial pressures and, in some compositions, the formation of poorly conducting, ordered-pyrochlore microdomains dispersed amongst the cubic defect-fluorite matrix. In a second approach to the formulation of new oxygen-ion conductors suitable for the intermediate-temperature SOFC, compounds possessing structures other than the fluorite structure were considered. An examination of the literature for oxides having the pyrochlore, scheelite and perovskite structures showed that the Sr+2- and Mg+2-doped LaGaO3 perovskites (LSGM) possessed ionic conductivity equal to the highest conducting, zirconia and ceria binary compounds. Therefore the perovskite systems La0.9Sr0.1Ga(0.8-x)InxMg0.2O2.85 (X = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8) (I-LSGM) were prepared and examined, the objective being to favourably influence structural parameters believed responsible for optimal ionic conductivity, namely the unit cell symmetry and volume. It was found that In+3 systematically substituted for Ga+3 on to the B-site of LSGM at least up to the X = 0.4 composition. While In+3 was found to replace the Ga+3 as expected, Mg+2, which occupies the same crystallographic site, was also replaced by In+3. Up to the X = 0.2 composition, at least two trace level secondary phases were observed to form along with the bulk I-LSGM phase. For I-LSGM compositions with X > 0.2, significantly larger concentrations of the secondary phases were identified. Evidence of a strontium-rich, high-temperature liquid phase was observed also near the grain boundaries on as-sintered and thermally etched surfaces in LSGM and I-LSGM compositions. It is believed that the observed, high sintered density in the complex, doped-LaGaO3 systems is due to the formation of this high-temperature liquid phase. Increasing levels of diffuse scatter and superstructure formation were observed in electron diffraction patterns in the I-LSGM bulk phase (up to X = 0.2), indicating a possible decrease in vacancy concentration and reduced, localised unit cell symmetry. The electrical conductivity in the I-LSGM compositions was believed to be influenced by the distortion of the oxygen-ion conduction path, a reduction in vacancy concentration, formation of stronger dopant-vacancy associates at low temperature and the presence of ordered structures. In addition, phase instability, in the form of subtle ordering in specific crystalline planes, was observed to influence the electrical conductivity as a function of time at intermediate temperatures.
253

Model and theoretical simulation of solid oxide fuel cells

Zalar, Frank M., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 75-77
254

The Anode in the Direct Methanol Fuel Cell

Nordlund, Joakim January 2003 (has links)
The direct methanol fuel cell (DMFC) is a very promisingpower source for low power applications. High power and energydensity, low emissions, operation at or near ambientconditions, fast and convenient refuelling and a potentiallyrenewable fuel source are some of the features that makes thefuel cell very promising. However, there are a few problemsthat have to be overcome if we are to see DMFCs in our everydaylife. One of the drawbacks is the low performance of the DMFCanode. In order to make a better anode, knowledge about whatlimits the performance is of vital importance. With theknowledge about the limitations of the anode, the flow field,gas diffusion layer and the morphology of the electrode can bemodified for optimum performance. The aim of this thesis is to elucidate the limiting factorsof the DMFC anode. A secondary goal is to create a model of theperformance, which also has a low computational cost so that itcan be used as a sub model in more complex system models. Toreach the primary goal, to elucidate the limiting factors, amodel has to be set up that describes the most importantphysical principles occurring in the anode. In addition, experiments have to be performed to validatethe model. To reach the secondary goal, the model has to bereduced to a minimum. A visual DMFC has been developed alongwith a methodology to extract two-phase data. This has provento be a very important part of the understanding of thelimiting factors. Models have been developed from a detailedmodel of the active layer to a two-phase model including theentire three-dimensional anode. The results in the thesis show that the microstructure inthe active layer does not limit the performance. Thelimitations are rather caused by the slow oxidation kineticsand, at concentrations lower than 2 M of methanol, the masstransport resistance to and inside the active layer. Theresults also show that the mass transfer of methanol to theactive layer is improved if gas phase is present, especiallyfor higher temperatures since the gas phase then contains moremethanol. It is concluded that the mass transport resistance lower theperformance of a porous DMFC anode at the methanolconcentrations used today. It is also concluded that masstransfer may be improved by making sure that there is gas phasepresent, which can be done by choosing flow distributor and gasdiffusion layer well. Keywords: direct methanol fuel cell, fuel cell, DMFC, anode,model
255

The conceptual design of novel future UAV's incorporating advanced technology research components

Clarke, Adrian James January 2011 (has links)
There is at present some uncertainty as to what the roles and requirements of the next generation of UAVs might be and the configurations that might be adopted. The incorporation of technological features on these designs is also a significant driving force in their configuration, efficiency, performance abilities and operational requirements. The objective of this project is thus to provide some insight into what the next generation of technologies might be and what their impact would be on the rest of the aircraft. This work involved the conceptual designs of two new relevant full-scale UAVs which were used to integrate a select number of these advanced technologies. The project was a CASE award which was linked to the Flaviir research programme for advanced UAV technologies. Thus, the technologies investigated during this study were selected with respect to the objectives of the Flaviir project. These were either relative to those already being developed as course of the Flaviir project or others from elsewhere. As course of this project, two technologies have been identified and evaluated which fit this criterion and show potential for use on future aircraft. Thus we have been able to make a contirubtion knowledge in two gaps in current aerospace technology. The first of these studies was to investigate the feasibility of using a low cost mechanical thrust vectoring system as used on the X-31, to replace conventional control surfaces. This is an alternative to the fluidic thrust vectoring devices being proposed by the Flaviir project for this task. The second study is to investigate the use of fuel reformer based fuel cell system to supply power to an all-electric power train which will be a means of primary propulsion. A number of different fuels were investigated for such a system with methanol showing the greatest promise and has been shown to have a number of distinct advantages over the traditional fuel for fuel cells (hydrogen). Each of these technologies was integrated onto the baseline conceptual design which was identified as that most suitable to each technology. A UCAV configuration was selected for the thrust vectoring system while a MALE configuration was selected for the fuel cell propulsion system. Each aircraft was a new design which was developed specifically for the needs of this project. Analysis of these baseline configurations with and without the technologies allowed an assessment to be made of the viability of these technologies. The benefits of the thrust vectoring system were evaluated at take-off, cruise and landing. It showed no benefit at take-off and landing which was due to its location on the very aft of the airframe. At cruise, its performance and efficiency was shown to be comparable to that of a conventional configuration utilizing elevons and expected to be comparable to the fluidic devices developed by the Flaviir project. This system does however offer a number of benefits over many other nozzle configurations of improved stealth due to significant exhaust nozzle shielding.The fuel reformer based fuel cell system was evaluated in both all-electric and hybrid configurations. In the ell-electric configuration, the conventional turboprop engine was completely replaced with an all-electric powertrain. This system was shown to have an inferior fuel consumption compared to a turboprop engine and thus the hybrid system was conceived. In this system, the fuel cell is only used at loiter with the turboprop engine being retained for all other flight phases. For the same quantity of fuel, a reduction in loiter time of 24% was experienced (compared to the baseline turboprop) but such a system does have benefits of reduced emissions and IR signature. With further refinement, it is possible that the performance and efficiency of such a system could be further improved. In this project, two potential technologies were identified and thoroughly analysed. We are therefore able to say that the project objectives have been met and the project has proven worthwhile to the advancement of aerospace technology. Although these systems did not provide the desired results at this stage, they have shown the potential for improvement with further development.
256

Design, Fabrication and Characterization of Novel Planar Solid Oxide Fuel Cells

Compson, Charles E. 27 February 2007 (has links)
Planar solid oxide fuel cells (SOFCs) were designed, fabricated and characterized in order to develop a (1) cost-effective method for fabrication of thin electrolyte layers, (2) hermetic sealing and (3) stable interconnects. Electrophoretic deposition (EPD) was discovered to be an excellent method for fabricating dense electrolyte layers of about 5m thick on porous non-conducting substrates. The EPD process was thoroughly studied from proof-of-concept to statistical reproducibility, deposition mechanism, modeling and process optimization. Deposition on non-conducting substrates was found to follow many of the same fundamental trends as that on conductive substrates except for the voltage efficiency and detailed charge transfer mechanism. Eventually, the process was optimized such that an SOFC was fabricated that achieved 1.1W/cm2 at 850C. Further, a novel sealless planar SOFC was designed that incorporates a hermetic interface between the electrolyte and interconnect similar to tubular and honeycomb designs. The hermetic interface successfully acted as a blocking electrode under DC polarization, indicating its potential to act as a sealant. Leakage rates across the interface were 0.027sccm at 750c, similar to polycrystalline mica seals. Through a process of tape casting and lamination, a two-cell stack without sealant was fabricated and achieved a power density of 75mW/cm2 at 750C. Finally, the degradation rate of silver and silver-based interconnects was studied under static and dual-atmosphere conditions. Corrosion of silver grain boundaries along with sublimation losses results in the formation of large pores, resulting in up to 30 of anode oxidation after 8hrs testing at 750c. Further stability studies indicated that silver-based interconnects would be better suited for applications at operating temperatures less than 650C.
257

Effect of Hydrogen Inlets on Planar £gPEM Fuel Cell Stacks

Yeh, Jian-liang 05 August 2010 (has links)
Planar £gPEM Fuel Cell Stacks are designed and fabricated in-house through a deep UV lithography technique, with SU 8 photoresist used as the microstructure mold for the fuel cell flow channel or bipolar plates when micro electroforming. The fuel cell stacks use a new design which means installing the fuel channel into PMMA, by which the fuel supply channel becomes convenient and simplified. The performance of the stack is measured in different inlets, and the effect of the hydrogen inlets is explained. The experimental results are presented in the form of polarization VI curves and PI curves for the different types of inlet. Furthermore, the influence of the inlets is presented and discussed.
258

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones

McLean, James Elliott 2011 August 1900 (has links)
Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient internal combustion engine to consider for numerous applications, but associated actions to mitigate certain exhaust emissions have generally deteriorated engine efficiency. Conventionally, diesel engine emission control has centered on in-cylinder techniques. Although these continue to hold promise, the industry trend is presently favoring the use of after-treatment devices which create new opportunities to improve the diesel engine's brake fuel conversion efficiency. This study focuses on injection timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct fuel injection, variable geometry turbo charging, and interfaced with a custom built engine controller. The study found that injection timing greatly affected BFCE by changing the combustion phasing. BFCE would increase up to a maximum then begin to decrease as phasing became less favorable. Combustion phasing would change from being mostly mixing controlled combustion to premixed combustion as injection timing would advance allowing more time for fuel to mix during the ignition delay. Combustion phasing, in turn, would influence many other engine parameters. As injection timing is advanced, in-cylinder temperatures and pressures amplify, and intake and exhaust manifold pressures deteriorate. Rate of heat release and rate of heat transfer increase when injection timing is advanced. Turbocharger speed falls with the advancing injection timing. Torque, however, rose to a maximum then fell off again even though engine speed and fueling rate were held constant between different injection timings. Interestingly, the coefficient of heat transfer changes from a two peak curve to a smooth one peak curve as the injection timing is advanced further. The major conclusion of the study is that injection advance both positively and negatively influences the diesel engine's response which contributes to the brake fuel conversion efficiency.
259

The Anode in the Direct Methanol Fuel Cell

Nordlund, Joakim January 2003 (has links)
<p>The direct methanol fuel cell (DMFC) is a very promisingpower source for low power applications. High power and energydensity, low emissions, operation at or near ambientconditions, fast and convenient refuelling and a potentiallyrenewable fuel source are some of the features that makes thefuel cell very promising. However, there are a few problemsthat have to be overcome if we are to see DMFCs in our everydaylife. One of the drawbacks is the low performance of the DMFCanode. In order to make a better anode, knowledge about whatlimits the performance is of vital importance. With theknowledge about the limitations of the anode, the flow field,gas diffusion layer and the morphology of the electrode can bemodified for optimum performance.</p><p>The aim of this thesis is to elucidate the limiting factorsof the DMFC anode. A secondary goal is to create a model of theperformance, which also has a low computational cost so that itcan be used as a sub model in more complex system models. Toreach the primary goal, to elucidate the limiting factors, amodel has to be set up that describes the most importantphysical principles occurring in the anode.</p><p>In addition, experiments have to be performed to validatethe model. To reach the secondary goal, the model has to bereduced to a minimum. A visual DMFC has been developed alongwith a methodology to extract two-phase data. This has provento be a very important part of the understanding of thelimiting factors. Models have been developed from a detailedmodel of the active layer to a two-phase model including theentire three-dimensional anode.</p><p>The results in the thesis show that the microstructure inthe active layer does not limit the performance. Thelimitations are rather caused by the slow oxidation kineticsand, at concentrations lower than 2 M of methanol, the masstransport resistance to and inside the active layer. Theresults also show that the mass transfer of methanol to theactive layer is improved if gas phase is present, especiallyfor higher temperatures since the gas phase then contains moremethanol.</p><p>It is concluded that the mass transport resistance lower theperformance of a porous DMFC anode at the methanolconcentrations used today. It is also concluded that masstransfer may be improved by making sure that there is gas phasepresent, which can be done by choosing flow distributor and gasdiffusion layer well.</p><p>Keywords: direct methanol fuel cell, fuel cell, DMFC, anode,model</p>
260

Novel technique development for characterizing electro-oxidation processes on platinum surfaces /

Madden, Thomas H. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 127-134).

Page generated in 0.0491 seconds