• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Development of a Correlation to Predict the Lean Blowout of Bluff Body Stabilized Flames with a Focus on Relevant Timescales and Fuel Characteristics

Huelskamp, Bethany C. 29 May 2013 (has links)
No description available.
2

Particulate emissions from gasoline direct injection engines

Leach, Felix Charles Penrice January 2014 (has links)
Direct injection spark ignition (DISI) engines are the next generation of gasoline fuelled engines. Their greater fuel economy and reduced CO2 emissions compared with port fuel injection (PFI) engines has led to their popularity. However, DISI engines produce a greater number of particulate matter (PM) emissions than PFI engines. Concern over the health effects of PM emissions, and forthcoming European legislation to regulate them from gasoline powered vehicles has led to an increased interest in the study of PM formation, measurement, and characterisation. A model was developed by Aikawa et al, the PM index, correlating PM emissions with fuel composition. PM emissions are thought to be linked both to the vapour pressure (VP) and the double bond equivalent (DBE) of the components of the fuel. However, there was no independent control of these parameters and the study was undertaken on a PFI engine. In this thesis, experiments have been conducted to validate this model and extend it, as the PN index, to DISI engines. Fuels have been designed using Raoult’s law and UNIFAC (with careful consideration of octane number) such that the DBE and VP of the fuel mix could be varied independently. The design of the fuels was such that the component parts would co-evaporate upon injection into the cylinder, ensuring a homogeneous mixture of the components at the point of ignition. The PN index has been tested on a single cylinder engine, at a matrix of test points, using these model fuels, and their PM emissions have been analysed using a Cambustion DMS500. The results show that the PN index is followed closely using model fuels, provided that these model fuels contain a ‘light-end’ (in this case 5 % v/v n-pentane). Imaging of in-cylinder evaporation and in-cylinder measurement of hydrocarbons shows how the composition of model fuels affects their PM emissions. The PN index has also been tested using commercial fuels on a single cylinder engine and a Jaguar V8 engine; the results again show that the PN index is also an excellent predictor of PN emissions for market fuels from both of these engines. PN emissions have been evaluated from two fuels representing the EU5 reference fuel specification, developed using the PN index to give a difference in PM emissions. Testing these fuels on both a single cylinder engine and a Jaguar V8 engine has shown up to a factor of three variation in observed PN emissions. This has important implications for forthcoming European emissions legislation. The results of these tests were fed into the recommendations for the EU6 reference fuel specification. The PN index has also been investigated in a Jaguar V6 engine with five different fuels with a spread of calculated PN indices over a simulated NEDC. Here the PN emissions have been measured using two PN, and one PM instrument and the results compared. The results show that the trends of the PN index are followed, but not as closely as predicted. Detailed analysis shows that this discrepancy is due to other effects, for example cold start, dominating the PN emissions in certain phases. PN emissions have been measured from a highly boosted engine at a variety of operating points using 14 different fuels. It has been shown that for a large variety of engine operating parameters PN emissions from highly boosted engines behave as expected. When changing the fuels, the results show that a variation of over three orders of magnitude can be observed. The predictions of the PN index are inconclusive however, with further work suggested to fully evaluate the PN index on highly boosted engines.
3

Turbulent flame propagation characteristics of high hydrogen content fuels

Marshall, Andrew 21 September 2015 (has links)
Increasingly stringent pollution and emission controls have caused a rise in the use of combustors operating under lean, premixed conditions. Operating lean (excess air) lowers the level of nitrous oxides (NOx) emitted to the environment. In addition, concerns over climate change due to increased carbon dioxide (CO2) emissions and the need for energy independence in the United States have spurred interest in developing combustors capable of operating with a wide range of fuel compositions. One method to decrease the carbon footprint of modern combustors is the use of high hydrogen content (HHC) fuels. The objective of this research is to develop tools to better understand the physics of turbulent flame propagation in highly stretch sensitive premixed flames in order to predict their behavior at conditions realistic to the environment of gas turbine combustors. This thesis presents the results of an experimental study into the flame propagation characteristics of highly stretch-sensitive, turbulent premixed flames generated in a low swirl burner (LSB). This study uses a scaling law, developed in an earlier thesis from leading point concepts for turbulent premixed flames, to collapse turbulent flame speed data over a wide range of conditions. The flow and flame structure are characterized using high speed particle image velocimetry (PIV) over a wide range of fuel compositions, mean flow velocities, and turbulence levels. The first part of this study looks at turbulent flame speeds for these mixtures and applies the previously developed leading points scaling model in order to test its validity in an alternate geometry. The model was found to collapse the turbulent flame speed data over a wide range of fuel compositions and turbulence levels, giving merit to the leading points model as a method that can produce meaningful results with different geometries and turbulent flame speed definitions. The second part of this thesis examines flame front topologies and stretch statistics of these highly stretch sensitive, turbulent premixed flames. Instantaneous flame front locations and local flow velocities are used to calculate flame curvatures and tangential strain rates. Statistics of these two quantities are calculated both over the entire flame surface and also conditioned at the leading points of the flames. Results presented do not support the arguments made in the development of the leading points model. Only minor effects of fuel composition are noted on curvature statistics, which are mostly dominated by the turbulence. There is a stronger sensitivity for tangential strain rate statistics, however, time-averaged values are still well below the values hypothesized from the leading points model. The results of this study emphasize the importance of local flame topology measurements towards the development of predictive models of the turbulent flame speed.
4

Experimental investigations on sooty flames at elevated pressures

Gohari Darabkhani, Hamid January 2010 (has links)
This study addresses the influence of elevated pressures, fuel type, fuel flow rate and co-flow air on the flame structure and flickering behaviour of laminar oscillating diffusion flames. Photomultipliers, high speed photography and schlieren, accompanied with digital image processing techniques have been used to study the flame dynamics. Furthermore, the effects of pressure on the flame geometry and two-dimensional soot temperature distribution in a laminar stable diffusion flame have been investigated, utilising narrow band photography and two-colour pyrometry technique in the near infra-red region. This study provides a broad dataset on the diffusion (sooty) flame properties under pressures from atmospheric to 16 bar for three gaseous hydrocarbon fuels (methane, ethylene and propane) in a co-flow burner facility.It has been observed that the flame properties are very sensitive to the fuel type and flow rate at elevated pressures. The cross-sectional area of the stable flame shows an average inverse dependence on pressure to the power of n, where n was found to be 0.8±0.2 for ethylene flame, 0.5±0.1 for methane flame and 0.6±0.1 for propane flame. The height of a flame increases firstly with pressure and then decreases with further increase of pressure. It is observed that the region of stable combustion was markedly reduced as pressure was increased. An ethylene flame flickers with at least three dominant modes, each with corresponding harmonics at elevated pressures. In contrast, methane flames flicker with one dominant frequency and as many as six harmonic modes at elevated pressures. The increase in fuel flow rate was observed to increase the magnitude of oscillation. The flickering frequency, however, remains almost constant at each pressure. The dominant flickering frequency of a methane diffusion flame shows a power-law dependence on chamber pressure.It has been observed that the flame dynamics and stability are also strongly affected by the co-flow air velocity. When the co-flow velocity reached a certain value, the buoyancy driven flame oscillation was completely suppressed. The schlieren imaging has revealed that the co-flow of air is able to push the initiation point of outer toroidal vortices beyond the visible flame to create a very stable flame. The oscillation frequency was observed to increase linearly with the air co-flow rate. The soot temperature results obtained by applying the two-colour method in the near infra-red region shows that in diffusion flames the overall temperatures decrease with increasing pressure. It is shown that the rate of temperature drop is greater for a pressure increase at lower pressures in comparison with higher pressures.

Page generated in 0.044 seconds