1 |
Functional calculus with applications to Tadmor-Ritt operatorsJuncu, Stefan Gheorghe 19 June 2015 (has links)
One can give various rigorous definitions to the notion of "functional calculus", but a functional calculus is ultimately just a mathematically meaningful way of talking about an operator f(T), where, T is an operator and f is a function. This thesis is concerned with this concept and with one of its applications, the finding of bounds for powers of operators. It is actually this very application that has prompted the entire investigation presented here. This application is relevant to various fields, such as the numerical analysis of PDE and Markov chains. Chapter I presents various abstract approaches to the notion of "functional calculus" that are given content by three major examples: the Riesz-Dunford functional calculus, the Weyl functional calculus and the functional calculus for sectorial operators. Chapter II investigates various conditions that ensure power boundedness for operators, putting the Tadmor-Ritt condition at its center. The Riesz-Dunford calculus is instrumental for the proofs in this chapter. Chapter III investigates Pascale Vitse's use of Cauchy-Stieltjes integrals and their multipliers for obtaining bounds on powers of operators; the chapter closes with an investigation of partially power bounded operators.
|
2 |
Two Characterizations of Commutativity for C*-algebraKo, Chun-Chieh 11 June 2002 (has links)
In this thesis, We investigate the problem of when a C*-algebra is commutative through continuous functional calculus, The principal results are that:
(1) A C*-algebra A is commutative if and only if
e^(ix)e^(iy)=e^(iy)e^(ix),
for all self-adjoint elements x,y in A.
(2) A C*-algebra A is commutative if and only if
e^(x)e^(y)=e^(y)e^(x)
for all positive elements x,y in A.
We will give an extension of (2) as follows: Let
f:[a,b]-->[c,d] be any continuous strictly monotonic function where a,b,c,d in R, a<b,c<d. Then a C*-algebra A is commutative if and only if
f(x)f(y)=f(y)f(x),
for all self-adjoint elements x,y in A with spec(x) in [a,b] and spec(y) in [a,b].
|
3 |
Cálculo funcional holomorfo para operadores pseudodiferenciais / Holomorphic functional calculus for pseudodifferential operatorsChucata, Marco Eduardo Barros 13 June 2019 (has links)
O cálculo funcional de operadores em espaços de Banach tem uma longa história, sendo inicialmente desenvolvido por F. Riesz, N. Dunford entre outros. Em 1986, uma importante contribuição foi feita por Alan McIntosh, que definiu um cálculo funcional holomorfo de operadores setoriais e destacou uma importante classe de operadores setoriais desses operadores: a dos operadores com cálculo funcional holomorfo limitado (CFHL). Do ponto de vista de operadores diferenciais e pseudodiferenciais, alguns elementos envolvidos neste cálculo já estavam presentes nos trabalhos de R. T. Seeley sobre potências complexas de operadores diferenciais elípticos. Mais tarde mostrou-se que diversos operadores possuem CFHL. Um artigo recente nesta direção e base para esta dissertação foi publicado por Bilyj, Schrohe e Seiler. Neste trabalho mostraremos que certos operadores pseudodiferenciais, agindo em espaços de Banach apropriados, são setoriais e possuem CFHL. Para isso faremos o estudo da álgebra dos símbolos de ordem zero e utilizaremos uma construção para a parametriz do resolvente. A apresentação procura ser uma versão mais didática do artigo de Bilyj, Schrohe e Seiler. Além disso, fazemos certas adaptações nas demonstrações com o propósito de facilitar a compreensão dos argumentos. Também vamos apresentar aplicações do resultado obtido. / Functional calculus for operators acting on Banach Spaces has a long history. It was initially developed by F. Riesz, N. Dunford among others. In 1986, an important contribution was made by Alan McIntosh who defined a holomorphic functional calculus for sectorial operators and put on the scene an important class of sectorial operators, namely, operators with a bounded holomorphic functional calculus (BHFC). From the point of view of differential and pseudodifferential operators, some elements treated in this calculus were already in the works of R. T. Seeley about complex powers of elliptic differential operators. Later it was shown that several operators have BHFC. A recent paper in this direction, and the one on which this dissertation is based, was published by Bilyj, Schrohe and Seiler. In this work we show that certain pseudodifferential operators, acting on appropriate Banach spaces, are sectorial and have BHFC. For this we will study the algebra of symbols of order zero and use a construction for the parametrix. This presentation aims to explore and detail the paper of Bilyj, Schrohe and Seiler. Furthermore, we make adaptations in the proofs in order to clarify the argument. We also show applications of the obtained results.
|
4 |
Functional calculus and coadjoint orbits.Raffoul, Raed Wissam, Mathematics & Statistics, Faculty of Science, UNSW January 2007 (has links)
Let G be a compact Lie group and let π be an irreducible representation of G of highest weight λ. We study the operator-valued Fourier transform of the product of the j-function and the pull-back of ?? by the exponential mapping. We show that the set of extremal points of the convex hull of the support of this distribution is the coadjoint orbit through ?? + ??. The singular support is furthermore the union of the coadjoint orbits through ?? + w??, as w runs through the Weyl group. Our methods involve the Weyl functional calculus for noncommuting operators, the Nelson algebra of operants and the geometry of the moment set for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo correspondence for compact Lie groups, independently of character formulae. We also develop a "noncommutative" version of the Kirillov character formula, valid for noncentral trigonometric polynomials. This generalises work of Cazzaniga, 1992.
|
5 |
Functional calculus and coadjoint orbits.Raffoul, Raed Wissam, Mathematics & Statistics, Faculty of Science, UNSW January 2007 (has links)
Let G be a compact Lie group and let π be an irreducible representation of G of highest weight λ. We study the operator-valued Fourier transform of the product of the j-function and the pull-back of ?? by the exponential mapping. We show that the set of extremal points of the convex hull of the support of this distribution is the coadjoint orbit through ?? + ??. The singular support is furthermore the union of the coadjoint orbits through ?? + w??, as w runs through the Weyl group. Our methods involve the Weyl functional calculus for noncommuting operators, the Nelson algebra of operants and the geometry of the moment set for a Lie group representation. In particular, we re-obtain the Kirillov-Duflo correspondence for compact Lie groups, independently of character formulae. We also develop a "noncommutative" version of the Kirillov character formula, valid for noncentral trigonometric polynomials. This generalises work of Cazzaniga, 1992.
|
6 |
The spectral theorem for unbounded and autoadjoints operators / O teorema espectral para operadores nÃo-limitados e autoadjuntosDiego Eloi Misquita Gomes 13 March 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O Teorema Espectral à um dos teoremas mais famosos da Analise Funcional, principalmente pelo grande nÃmero de versÃes dadas ao mesmo. Existem versÃes para operadores
limitados, ilimitados, autoadjuntos, compactos, em espacos de dimensÃo finita ou infinita. A versÃo geral do teorema foi provada independentemente por Stone e Neumann no
perÃodo de 1929-1932, mas outras provas surgiram ao longo dos anos. A prova contida neste trabalho à de Edward Brian Davies(1994), o qual conseguiu, na prova da versÃo do teorema para cÃlculos funcionais, explicitar uma fÃrmula para f(H) (onde H à um operador nÃo-limitado e autoadjunto) para uma grande classe de funÃÃes e nÃo apenas mostrar a existÃncia do mesmo. A principal idÃia foi originalmente dada por Heler e Strojand(1989) e utiliza em sua prova teoremas conhecidos como a FÃrmula Integral de Cauchy Generalizada, Teorema da DivergÃncia, Stone Weierstrass, Teorema de Liouville, alÃm de fatos conhecidos da teoria dos operadores lineares em espacos de Hilbert. / The Spectral Theorem is one of the most famous theorems in Functional Analysis,particularly because of the large number of proofs given to it. There are versions for bounded operators, unbounded operators, self-adjoints operators, compacts, on finite-dimensional spaces, on finnite-dimensional spaces. The general version was proved by
Stone and Weierstrass during the period 1929-1932, but another proofs emerged over the years. The proof in this monography was given by Edward Brian Davies(1994), which
gives an explicity formula for the functional calculus f(H) (where H is an self-adjoint operator) and not only proof its existence. The main idea was originally given by Heler
and Strojand(1989) and in its proofs it used well-knows theorems like Stokes' Theorem,Cauchy's Integral Formula Generalized, Stone-Weierstrass, Liouville's Theorem, besides
facts of the theory of linear operators on Hilbert spaces.
|
7 |
Extension de la théorie des espaces de tentes et applications à certains problèmes aux limites / Extensions of the theory of tent spaces and applications to boundary value problemsAmenta, Alexander 24 March 2016 (has links)
Nous étendons la théorie des espaces de tentes, définis classiquement sur R^n, à différents espaces métriques. Pour les espaces doublant nous montrons que la théorie usuelle «globale» reste valide, et pour les espaces «non-uniformément localement doublant» (y compris R^n avec la mesure gaussienne) nous établissons une théorie locale satisfaisante. Dans le contexte doublant nous prouvons des résultats de plongement du type Hardy–Littlewood–Sobolev pour des espaces de tentes a poids, et dans le cas particulier des espaces métriques non-bornes AD-réguliers nous identifions les espaces d’interpolation réelle (les «espaces-Z») des espaces de tentes a poids. Les espaces de tentes a poids et les espaces-Z sur R^n sont ensuite utilises pour construire les espaces de Hardy–Sobolev et de Besov adaptes a des opérateurs de Dirac perturbes. Ces espaces jouent un rôle clé dans la classification des solutions de systèmes du premier ordre de type Cauchy–Riemann (ou de manière équivalente, la classification des gradients conormaux des solutions de systèmes elliptiques de second ordre) dans les espaces de tentes à poids et les espaces-Z. Nous établissons cette classification, et en corollaire nous obtenons une classification utile des cas ou les problèmes de Neumann et de Régularité; sont bien poses, pour des systèmes elliptiques de second ordre avec coefficients complexes et données dans les espaces de Hardy–Sobolev et de Besov d’ordre s en (-1,0). / We extend the theory of tent spaces from Euclidean spaces to various types of metric measure spaces. For doubling spaces we show that the usual `global' theory remains valid, and for `non-uniformly locally doubling' spaces (including R^n with the Gaussian measure) we establish a satisfactory local theory. In the doubling context we show that Hardy–Littlewood–Sobolev-type embeddings hold in the scale of weighted tent spaces, and in the special case of unbounded AD-regular metric measure spaces we identify the real interpolants (the `Z-spaces') of weighted tent spaces.Weighted tent spaces and Z-spaces on R^n are used to construct Hardy–Sobolev and Besov spaces adapted to perturbed Dirac operators. These spaces play a key role in the classification of solutions to first-order Cauchy–Riemann systems (or equivalently, the classification of conormal gradients of solutions to second-order elliptic systems) within weighted tent spaces and Z-spaces. We establish this classification, and as a corollary we obtain a useful characterisation of well-posedness of Regularity and Neumann problems for second-order complex-coefficient elliptic systems with boundary data in Hardy--Sobolev and Besov spaces of order s in (-1,0).
|
8 |
Problèmes aux limites pour les systèmes elliptiques / Boundary value problems for elliptic systemsStahlhut, Sebastian 30 September 2014 (has links)
Dans cette thèse, nous étudions des problèmes aux limites pour les systèmes elliptiques sous forme divergence avec coefficients complexes dans L^{infty}. Nous prouvons des estimations a priori, discutons de la solvabilité et d'extrapolation de la solvabilité. Nous utilisons une transformation via des équations Cauchy-Riemann généralisées due à P. Auscher, A. Axelsson et A. McIntosh. On peut résoudre les équations Cauchy-Riemann généralisées via la semi-groupe engendré par un opérateur différentiel perturbé d'ordre un de type Dirac. A l'aide du semi-groupe, nous étudions la théorie L^{p} avec une discussion sur la bisectorialité, le calcul fonctionnel holomorphe et les estimations hors-diagonales pour des opérateurs dans le calcul fonctionnel. En particulier, nous développons une théorie L^{p}-L^{q} pour des opérateurs dans le calcul fonctionnel d'opérateur de type Dirac perturbé. Les problèmes de Neumann, Régularité et Dirichlet se formulent avec des estimations quadratiques et des estimations pour la fonction maximale nontangentielle. Cela conduit à à démontrer de telles estimations pour le semi-groupe d'opérateur de Dirac Pour cela, nous utilisons les espaces Hardy associés et les identifions dans certains cas avec des sous-espaces des espaces de Hardy et Lebesgue classiques. Nous obtenons enfin des estimations a priori pour les problème aux limites via une extension utilisant des espaces de Sobolev associés. Nous utilisons les estimations a priori pour une discussion sur la solvabilité des problèmes aux limites et montrer un théorème d'extrapolation de la solvabilité. / In this this thesis we study boundary value problems for elliptic systems in divergence form with complex coefficients in L^{\infty}. We prove a priori estimates, discuss solvability and extrapolation of solvability. We use a transformation to generalized Cauchy-Riemann equations due to P. Auscher, A. Axelsson, and A. McIntosh. The generalized Cauchy-Riemann equations can be solved by the semi-group generated by a perturbed first order Dirac/differential operator. In relation to semi-group theory we setup the L^p theory by a discussion of bisectoriality, holomorphic functional calculus and off-diagonal estimates for operators in the functional calculus. In particular, we develop an L^p-L^q theory for operators in the functional calculus of the first order perturbed Dirac/differential operators. The formulation of Neumann, Regularity and Dirichlet problems involve square function estimates and nontangential maximal function estimates. This leads us to discuss square function estimates and nontangential maximal function estimates involving operators in the functional calculus of the perturbed first order Dirac/differential operator. We discuss the related Hardy spaces associated to operators and prove identifications by subspaces of classical Hardy and Lebesgue spaces. We obtain the a priori estimates by an extension of the square function estimates and nontangential maximal function estimates to Sobolev spaces associated to operators. We use the a priori estimates for a discussion of solvability and extrapolation of solvability.
|
9 |
Continuous linear and bilinear Schur multipliers and applications to perturbation theory / Multiplicateurs de Schur linéaires et bilinéaires continus et applications à la théorie de la perturbationCoine, Clément 30 June 2017 (has links)
Dans le premier chapitre, nous commençons par définir certains produits tensoriels et identifions leur dual. Nous donnons ensuite quelques propriétés des classes de Schatten. La fin du chapitre est dédiée à l’étude des espaces de Bochner à valeurs dans l'espace des opérateurs factorisables par un espace de Hilbert. Le deuxième chapitre est consacré aux multiplicateurs de Schur linéaires. Nous caractérisons les multiplicateurs bornés sur B(Lp, Lq) lorsque p est inférieur à q puis appliquons ce résultat pour obtenir de nouvelles relations d'inclusion entre espaces de multiplicateurs. Dans le troisième chapitre, nous caractérisons, au moyen de multiplicateurs de Schur linéaires, les multiplicateurs de Schur bilinéaires continus à valeurs dans l'espace des opérateurs à trace. Dans le quatrième chapitre, nous donnons divers résultats concernant les opérateurs intégraux multiples. En particulier, nous caractérisons les opérateurs intégraux triples à valeurs dans l'espace des opérateurs à trace puis nous donnons une condition nécessaire et suffisante pour qu'un opérateur intégral triple définisse une application complètement bornée sur le produit de Haagerup de l'espace des opérateurs compacts. Enfin, le cinquième chapitre est dédié à la résolution des problèmes de Peller. Nous commençons par étudier le lien entre opérateurs intégraux multiples et théorie de la perturbation pour le calcul fonctionnel des opérateurs autoadjoints pour finir par la construction de contre-exemples à ces problèmes. / In the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems.
|
10 |
Calcul fonctionnel non-anticipatif et applications aux processus stochastiques / Non-anticipative functional calculus and applications to stochastic processesLu, Yi 06 December 2017 (has links)
Cette thèse est consacrée à l’étude du calcul fonctionnel non-anticipatif, qui est basé sur la notion de dérivée verticale d'une fonctionelle. Nous étendons le cadre classique de ce calcul à des fonctionnelles ne possédant pas de dérivée directionnelle classique. Dans la première partie, nous montrons comment une classe importante de fonctionelles, définie par une espérance conditionnelle, peuvent être approchées de façon systématique par des fonctionnelles régulières. Dans la deuxième partie, nous introduisons une notion de dérivée verticale faible qui couvre une plus grande classe de fonctionnelles, et notamment toutes les martingales locales. Dans la première partie, nous nous sommes intéressés à la représentation d'une espérance conditionnelle par une fonctionnelle non-anticipative. L'idée est d'approximer ces fonctionnelles par une suite des fonctionnelles régulières dans un certain sens. Cette approche fournit une façon systématique d'obtenir une approximation explicite de la représentation des martingales pour une grande famille de fonctionnelles Browniennes. Nous obtenons également un ordre de convergence explicite. Quelques applications au problème de la couverture dynamique sont données à la fin de cette partie.Dans la deuxième partie, nous étendons la notion de dérivée verticale pour des fonctionnelles qui n'admettent pas nécessairement de dérivée directionnelle. Cette notion nous permet également d'obtenir une caractérisation fonctionnelle d'une martingale locale par rapport à un processus de référence fixé, ce qui donne lieu à une notion de solution faible pour des équations aux dérivées partielles dépendant de la trajectoire. / This thesis focuses on various mathematical questions arising in the non-anticipative functional calculus, which is based on a notion of pathwise directional derivatives for functionals. We extend the scope and results of this calculus to functionals which may not admit such derivatives, either through approximations (Part I) or by defining a notion of weak vertical derivative (Part II). In the first part, we consider the representation of conditional expectations as non-anticipative functionals. We show that it is possible under very general conditions to approximate such functionals by a sequence of smooth functionals in an appropriate sense. This approach provides a systematic method for computing explicit approximations to martingale representations for a large class of Brownian functionals. We also derive explicit convergence rates of the approximations. These results are then applied to the problem of sensitivity analysis and dynamic hedging of (path-dependent) contingent claims. In the second part, we propose a concept of weak vertical derivative for non-anticipative functionals which may fail to possess directional derivatives. The definition of the weak vertical derivative is based on the notion of pathwise quadratic variation and makes use of the duality associated to the associated bilinear form. We show that the notion of weak vertical derivative leads to a functional characterization of local martingales with respect to a reference process, and allows to define a concept of pathwise weak solution for path-dependent partial differential equations.
|
Page generated in 0.1105 seconds