1 |
Functional Complementation of atdgat1-/- by Overexpression of Avocado DGAT1 to Restore Triacylglycerol AccumulationCampbell, Andrew, Rahman, Mahbubur Md., Kilaru, Aruna 07 April 2015 (has links)
No description available.
|
2 |
Sugarcane thi1 homologues: a molecular and functional study / Homólogos a thi1 em cana-de-açúcar: estudo molecular e funcionalVieira, Andréia Prata 22 May 2018 (has links)
Thiazole biosynthetic protein (THI1) is involved in the synthesis of the thiazole ring, a thiamine (vitamin B1) component. Thiamine is an essential co-factor in several carbohydrate and amino acid metabolic pathways. Prokaryotes and a few eukaryotes, such as fungi and plants, are able to synthesize thiamine de novo. These organisms contain the genes that encode the corresponding enzymes (such as THI1) that perform this metabolic function. THI1 actually functions as a reagent rather than as a conventional catalytic enzyme, as the THI1 polypeptide itself serves as the sulfide donor for thiazole formation. This gene also plays a role in organelle DNA damage tolerance. Arabidopsis thaliana has only one copy of the thi1 gene (At-thi1). Transcripts derived from At-thi1 are targeted simultaneously to chloroplasts and mitochondria by differential usage of two in-frame initiation codons. The tz-201 A. thaliana thi1 mutant has been shown to accumulate more sucrose in its tissues than wild-type plants. This suggests that a better understanding of thi1 genes and the role they play in cellular sucrose accumulation may be relevant for improving commercially important crops such as sugarcane. Sugarcane (Saccharum spp.) is a C4 photosynthesis monocot. Unlike A. thaliana, sugarcane has at least two thi1 copies (sc-thi1.1 and sc-thi1.2), as do the other C4 grasses. This thesis concerns the molecular and functional analyses of sugarcane thi1 (sc-thi1) gene homologues. The identified alleles related to sc-thi1.2 have some differences in sequence and seems to be diverging into two subgroups (sc-thi1.2a and sc-thi1.2b), based on phylogenetic analyses. Expression analysis showed that each sc-thi1 copy is expressed differentially in individual tissues and in developing stages levels. Subcellular analysis showed that sc-thi1.1 and sc-thi1.2b have the same cellular distribution pattern, distinct from the observed for sc-thi1.2a. Sc-thi1.1 and sc-thi1.2b were also able to partially complement thiamine auxotrophy in a yeast mutant deficient in thiamine biosynthesis. A similar complementation assay is not possible in the A. thaliana tz-201 mutant owing to low transformation efficiencies. Thus, Physcomitrella patens was chosen to generate thi1 mutant lines for future functional complementation studies. P. patens is a moss used as a plant model, with a small size, short life cycle and a haploid dominant phase. Despite its simplicity, it has six thi1 homologues copies. Homologous Recombination was used to generate P. patens thi1 mutants. In each case, a target thi1 gene was disrupted by replacing its coding region with an antibiotic resistance gene cassette. Single mutants were obtained for all six thi1 gene copies. All the knockout lines were able to survive and grow with only minor effects on morphology and physiology. Deletion of one of the thi1 gene copies (PpThi1.20F) drastically affected protoplast survival and regeneration, suggesting a role for this gene in early (polar) cell division and differentiation. The experimental design, which permits recycling of the selectable marker cassettes, provides a research platform for the construction of double, triple, quadruple or quintuple mutants in the future. The individual mutants line generated in this work, as well as the possible multiple mutants, will be useful for thi1 functional complementation experiments and for discerning the specific functions of individual thi1 gene family members. / THI1 (proteína da biossíntese de tiazol) está envolvida na síntese do anel de tiazol, um componente de tiamina (vitamina B1). A tiamina é um cofator essencial em várias vias metabólicas de carboidratos e aminoácidos. Somente procariontes e alguns eucariontes, como fungos e plantas, são capazes de sintetizar a tiamina de novo. A proteína THI1 atua mais como um reagente do que como uma enzima catalítica convencional, pois usa a si mesmo como doador de sulfeto para a formação do anel de tiazol. Este gene também está envolvido na tolerância ao dano no DNA das organelas. A. thaliana apresenta apenas uma cópia do gene thi1. Seu transcrito primário é direcionado simultaneamente aos cloroplastos e mitocôndrias através do uso diferencial de dois códons de iniciação, presentes no mesmo quadro aberto de leitura. Além disso, o mutante tz-201 de A. thaliana acumula mais sacarose em seus tecidos do que a planta selvagem. Isso sugere que um melhor entendimento do gene thi1 e seu papel no acúmulo de sacarose podem ser importantes para o melhoramento comercial de cultivares, como cana-de-açúcar. Cana-de-açúcar (Saccharum spp.) é uma monocotiledônea de metabolismo fotossintético C4. Diferentemente do observado em A. thaliana, a cana-de-açúcar possui pelo menos duas cópias (sc-thi1.1 e sc-thi1.2) homólogas a thi1, como observado também para outras gramíneas C4. Nesta tese são discutidas análises moleculares e funcionais dos homólogos do gene thi1 (sc-thi1) de cana-de-açúcar. Os alelos identificados como relativos a sc-thi1.2 apresentam algumas diferenças em suas sequências e, baseado em análises filogenéticas, parecem estar divergindo em dois subgrupos (sc-thi1.2a e sc-thi1.2b). As análises de expressão mostraram que cada cópia de sc-thi1 é diferencialmente expressa em diferentes tecidos e estágios de desenvolvimento. A análise de localização subcelular mostrou sc-thi1.1 e sc-thi1.2b apresentam o mesmo padrão de distribuição, distinto do observado para sc-thi1.2a. Sc-thi1.1 e sc-thi1.2b também foram capazes de complementar parcialmente a auxotrofia para tiamina em leveduras mutantes, deficientes na via de biossíntese de tiamina. Um teste similar de complementação funcional mutante tz-201 de A. thaliana não é possível no devido à baixa eficiência de transformação. Assim, Physcomitrella patens foi escolhida para gerar linhagens mutantes de thi1 para futuros estudos de complementação funcional. P. patens é um musgo usado como planta modelo, apresenta tamanho pequeno, um ciclo de vida curto e uma fase dominante haploide. Apesar de sua simplicidade, possui seis cópias homólogas a thi1. A técnica de Recombinação Homóloga foi escolhida para gerar os mutantes thi1 de P. patens. Em cada mutante, uma das cópias de thi1 foi interrompida, substituindo sua região codificante por um cassete de gene de resistência. Mutantes individuais foram obtidos para as seis cópias do gene thi1. As linhagens knockouts foram capazes de sobreviver e crescer apenas com alguns pequenos efeitos em sua morfologia e fisiologia. A deleção de uma das cópias de thi1 (PpThi1.20F) afetou drasticamente a sobrevivência e regeneração dos protoplastos, sugerindo um papel deste cópia gênica no inicio da divisão e diferenciação celular. O desenho experimento utilizado para a geração destes mutantes permite a reciclagem dos cassetes de seleção, fornecendo uma plataforma para a construção de duplos, triplos, quádruplos, quíntuplos e sêxtuplos mutantes no futuro. Os mutantes individuais para cada cópia de thi1 gerados nesse trabalho, bem como os possíveis mutantes múltiplos, serão úteis para experimentos de complementação funcional e o discernimento de funções específicas de diferentes membros da família gênica thi1.
|
3 |
Sugarcane thi1 homologues: a molecular and functional study / Homólogos a thi1 em cana-de-açúcar: estudo molecular e funcionalAndréia Prata Vieira 22 May 2018 (has links)
Thiazole biosynthetic protein (THI1) is involved in the synthesis of the thiazole ring, a thiamine (vitamin B1) component. Thiamine is an essential co-factor in several carbohydrate and amino acid metabolic pathways. Prokaryotes and a few eukaryotes, such as fungi and plants, are able to synthesize thiamine de novo. These organisms contain the genes that encode the corresponding enzymes (such as THI1) that perform this metabolic function. THI1 actually functions as a reagent rather than as a conventional catalytic enzyme, as the THI1 polypeptide itself serves as the sulfide donor for thiazole formation. This gene also plays a role in organelle DNA damage tolerance. Arabidopsis thaliana has only one copy of the thi1 gene (At-thi1). Transcripts derived from At-thi1 are targeted simultaneously to chloroplasts and mitochondria by differential usage of two in-frame initiation codons. The tz-201 A. thaliana thi1 mutant has been shown to accumulate more sucrose in its tissues than wild-type plants. This suggests that a better understanding of thi1 genes and the role they play in cellular sucrose accumulation may be relevant for improving commercially important crops such as sugarcane. Sugarcane (Saccharum spp.) is a C4 photosynthesis monocot. Unlike A. thaliana, sugarcane has at least two thi1 copies (sc-thi1.1 and sc-thi1.2), as do the other C4 grasses. This thesis concerns the molecular and functional analyses of sugarcane thi1 (sc-thi1) gene homologues. The identified alleles related to sc-thi1.2 have some differences in sequence and seems to be diverging into two subgroups (sc-thi1.2a and sc-thi1.2b), based on phylogenetic analyses. Expression analysis showed that each sc-thi1 copy is expressed differentially in individual tissues and in developing stages levels. Subcellular analysis showed that sc-thi1.1 and sc-thi1.2b have the same cellular distribution pattern, distinct from the observed for sc-thi1.2a. Sc-thi1.1 and sc-thi1.2b were also able to partially complement thiamine auxotrophy in a yeast mutant deficient in thiamine biosynthesis. A similar complementation assay is not possible in the A. thaliana tz-201 mutant owing to low transformation efficiencies. Thus, Physcomitrella patens was chosen to generate thi1 mutant lines for future functional complementation studies. P. patens is a moss used as a plant model, with a small size, short life cycle and a haploid dominant phase. Despite its simplicity, it has six thi1 homologues copies. Homologous Recombination was used to generate P. patens thi1 mutants. In each case, a target thi1 gene was disrupted by replacing its coding region with an antibiotic resistance gene cassette. Single mutants were obtained for all six thi1 gene copies. All the knockout lines were able to survive and grow with only minor effects on morphology and physiology. Deletion of one of the thi1 gene copies (PpThi1.20F) drastically affected protoplast survival and regeneration, suggesting a role for this gene in early (polar) cell division and differentiation. The experimental design, which permits recycling of the selectable marker cassettes, provides a research platform for the construction of double, triple, quadruple or quintuple mutants in the future. The individual mutants line generated in this work, as well as the possible multiple mutants, will be useful for thi1 functional complementation experiments and for discerning the specific functions of individual thi1 gene family members. / THI1 (proteína da biossíntese de tiazol) está envolvida na síntese do anel de tiazol, um componente de tiamina (vitamina B1). A tiamina é um cofator essencial em várias vias metabólicas de carboidratos e aminoácidos. Somente procariontes e alguns eucariontes, como fungos e plantas, são capazes de sintetizar a tiamina de novo. A proteína THI1 atua mais como um reagente do que como uma enzima catalítica convencional, pois usa a si mesmo como doador de sulfeto para a formação do anel de tiazol. Este gene também está envolvido na tolerância ao dano no DNA das organelas. A. thaliana apresenta apenas uma cópia do gene thi1. Seu transcrito primário é direcionado simultaneamente aos cloroplastos e mitocôndrias através do uso diferencial de dois códons de iniciação, presentes no mesmo quadro aberto de leitura. Além disso, o mutante tz-201 de A. thaliana acumula mais sacarose em seus tecidos do que a planta selvagem. Isso sugere que um melhor entendimento do gene thi1 e seu papel no acúmulo de sacarose podem ser importantes para o melhoramento comercial de cultivares, como cana-de-açúcar. Cana-de-açúcar (Saccharum spp.) é uma monocotiledônea de metabolismo fotossintético C4. Diferentemente do observado em A. thaliana, a cana-de-açúcar possui pelo menos duas cópias (sc-thi1.1 e sc-thi1.2) homólogas a thi1, como observado também para outras gramíneas C4. Nesta tese são discutidas análises moleculares e funcionais dos homólogos do gene thi1 (sc-thi1) de cana-de-açúcar. Os alelos identificados como relativos a sc-thi1.2 apresentam algumas diferenças em suas sequências e, baseado em análises filogenéticas, parecem estar divergindo em dois subgrupos (sc-thi1.2a e sc-thi1.2b). As análises de expressão mostraram que cada cópia de sc-thi1 é diferencialmente expressa em diferentes tecidos e estágios de desenvolvimento. A análise de localização subcelular mostrou sc-thi1.1 e sc-thi1.2b apresentam o mesmo padrão de distribuição, distinto do observado para sc-thi1.2a. Sc-thi1.1 e sc-thi1.2b também foram capazes de complementar parcialmente a auxotrofia para tiamina em leveduras mutantes, deficientes na via de biossíntese de tiamina. Um teste similar de complementação funcional mutante tz-201 de A. thaliana não é possível no devido à baixa eficiência de transformação. Assim, Physcomitrella patens foi escolhida para gerar linhagens mutantes de thi1 para futuros estudos de complementação funcional. P. patens é um musgo usado como planta modelo, apresenta tamanho pequeno, um ciclo de vida curto e uma fase dominante haploide. Apesar de sua simplicidade, possui seis cópias homólogas a thi1. A técnica de Recombinação Homóloga foi escolhida para gerar os mutantes thi1 de P. patens. Em cada mutante, uma das cópias de thi1 foi interrompida, substituindo sua região codificante por um cassete de gene de resistência. Mutantes individuais foram obtidos para as seis cópias do gene thi1. As linhagens knockouts foram capazes de sobreviver e crescer apenas com alguns pequenos efeitos em sua morfologia e fisiologia. A deleção de uma das cópias de thi1 (PpThi1.20F) afetou drasticamente a sobrevivência e regeneração dos protoplastos, sugerindo um papel deste cópia gênica no inicio da divisão e diferenciação celular. O desenho experimento utilizado para a geração destes mutantes permite a reciclagem dos cassetes de seleção, fornecendo uma plataforma para a construção de duplos, triplos, quádruplos, quíntuplos e sêxtuplos mutantes no futuro. Os mutantes individuais para cada cópia de thi1 gerados nesse trabalho, bem como os possíveis mutantes múltiplos, serão úteis para experimentos de complementação funcional e o discernimento de funções específicas de diferentes membros da família gênica thi1.
|
4 |
Etude d’un insecticide naturel nommé PA1b : Mécanisme d’action et expression hétérologue / Study of a natural insecticide named PA1b : Mechanism of action and heterologous expressionEyraud, Vanessa 26 February 2014 (has links)
Dans un contexte où l’utilisation de substance chimique en agriculture est de plus en plus décriée, il est nécessaire de trouver de nouveaux moyens de protections des cultures, tout en maintenant une agriculture économiquement performante. Ainsi, un peptide extrait de graines de pois nommée PA1b (Pea Albumin 1 sous-unité b), présentant une forte activité insecticide a été découvert au laboratoire. PA1b provoque chez l’insecte modèle du laboratoire, le charançon des céréales Sitophilus sp., 100% de mortalité. L’action de PA1b passe par la liaison à un récepteur présent chez les charançons sensibles, et cette liaison est absente chez les charançons résistants ; ce récepteur est une pompe à protons nommée V-ATPase pour Vacuolar ATPase. Elle est composée de 14 sous-unités organisées en deux complexes protéiques nommés V1 (intracellulaire) et V0 (membranaire). PA1b agissant à l’extérieur des cellules seul le complexe V0 composé des sous - unités a, c, d et e pouvait être le récepteur de notre toxine. Mon premier objectif de thèse a été de comprendre le mode d’action de PA1b, en identifiant d’abord la ou les sous-unités réceptrices de PA1b, puis en recherchant par quel mécanisme la liaison de PA1b induit la mort de l’insecte. Nous avons cloné chez le charançon tous les gènes du complexe Vo, puis j’ai complémenté des levures déficientes pour ces gènes. Ce travail, mais également celui réalisé en collaboration avec d’autres équipes, nous a permis de proposer un modèle de perception de PA1b qui implique les sous-unités c et e de la V-ATPase, et permet également de proposer des hypothèses pour les différentes résistances au peptide. Par des méthodes d’immunohistologie et de biochimie, j’ai ensuite montré de manière concordante que la liaison de PA1b à la V-ATPase déclenche un phénomène d’apoptose qui conduit à la mort cellulaire, puis à la mort de l’insecte. Le second objectif de ma thèse était la mise en place d’un système de production hétérologue de PA1b. Grâce à l’expression hétérologue par infiltration de feuille de tabac (Nicotiana benthamiana) nous avons mis en place une technique de production efficace de la protéine PA1b. Après avoir déterminé les parties du gène codant PA1b nécessaires à la production de la protéine fonctionnelle, le système de production a ensuite été simplifié par la construction d’une cassette d’expression. Ainsi six isoformes de PA1b présents chez le pois, dont l’activité individuelle restait inconnue, ont été produits et testés, permettant de montrer que le caractère amphiphile de PA1b était primordial pour son activité. Par cette technique nous avons mis en place un système de production rapide et efficace permettant de tester la toxicité de nombreux isoformes de PA1b. Ce travail sera une aide précieuse pour le projet, dont l’un des objectifs majeurs est l’optimisation de PA1b, c’est-à-dire de déterminer la séquence peptidique la plus toxique. / In a context where chemical pesticides are increasingly criticized, new crops protection strategies that do not affect agriculture efficiency and productivity, must be found. A new peptide extracted from pea (Pisum sativum) seeds, named PA1b (Pea albumin 1 subunit b), and showing an important insecticide activity, was discovered in our laboratory. PA1b induces 100% mortality in our insect model, the cereal weevil, Sitophilus sp. PA1b acts by interacting with a receptor, this interaction is present in sensitive weevil, but not present in resistant weevil. The PA1b receptor is the vacuolar H+ -ATPase (V-ATPase), a multi-subunit proton pump. The V-ATPase is composed of two functional protein complexes named V1 (in the cytoplasm) and V0 (in the membrane). As PA1b is known to act only in the extracellular space, thus only the V0 complex, composed on the subunits a, c, d and e, can be the toxin receptor. The first aim of this thesis is to understand the PA1b mode of action: (i) identifying the subunit(s) acting as the receptor(s), (ii) understanding how the binding mechanism of PA1b on the receptor lead to the insect death. The weevil V0 complex genes were cloned and we used them for a functional complementation tests in yeasts strains deleted for these genes. Our data, together with those obtained through collaboration, lead to the proposal of model for the PA1b perception signaling which would involve subunits c and e of the V-ATPase. The identification of the PA1b receptor allows us to propose a hypothetical model explaining resistance mechanism to the peptide. Using immunohistology and biochemistry methods, we showed that PA1b-receptor interaction induced cells death triggered by apoptosis thus leading to insect death. The second aim of this thesis was the development of a PA1b heterologous production system. Through Agrobacterium tumefaciens mediated transient transformation by infiltration in tobacco leaves (Nicotiana benthamiana) an efficient system for PA1b production was developed. After identification of the essential parts of the complex PA1 gene necessary for efficient PA1b production, we created an expression cassette to simplify our heterologous production system. We used the system to produce six pea PA1b-isoformes with unknown individual toxic activity. The isoforms toxicity was experimentally determined, and our data showed that the amphiphilic properties of PA1b are essential for the maintenance of its toxic activity. For the first time, we implemented a quick and efficient production system, which allows to produce and to test many naturals or synthetics PA1b isoforms. This work will be useful to achieve one of the most important objectives of the research on this molecule, that is the identification.
|
Page generated in 0.1681 seconds