11 |
Neuroscience for Engineering Sustainability: Measuring Cognition During Design Ideation and Systems Thinking Among Students in EngineeringHu, Mo 16 January 2018 (has links)
Sustainability is inherently a complex problem that requires new ways of thinking. To solve grand challenges such as climate change, environmental degradation, and poverty, engineers cannot rely on the same models of thinking that were used to create these problems. Engineering education is therefore critical to advance sustainable engineering solutions. Improving education relies on understanding of cognition of thinking and designing for sustainability. In this thesis, a nascent neuroimaging technology called functional near-infrared spectroscopy (fNIRS) was used to measure cognition among engineering students thinking about sustainability. fNIRS provides an opportunity to investigate how sustainability in design influences cognition, and how different concept generation techniques help students consider many aspects related to sustainability. The first manuscript provides evidence that engineering students perceive sustainability in design as a constraint, limiting the number of solutions for design and decreasing the cognitive efficiency to generate solutions. Senior engineering students generated fewer solutions than freshmen, however, seniors were better able to cognitively manage the sustainability parameter with higher cognitive efficiency. The second manuscript investigates the cognitive difference when generating concepts using concept listing or concept mapping. The results indicate that concept mapping (i.e. intentionally drawing relationships between concepts) leads to more concepts generated. An increase in concepts during concept mapping was also observed to shift cognitive load in the brain from regions associated with process sequencing to regions associated with cognitive flexibility. This research demonstrates the feasibility of fNIRS applied in engineering research and provides more understanding of the cognitive requirements for sustainability thinking. / M. S. / Sustainability brings new challenges to engineering design. To advance the practice of sustainable engineering, engineers are expected to be able to efficiently tackle socio-technical problems using a systems perspective. Engineering education is expected to help engineering students to achieve this goal. Improving education relies on understanding of mental process of thinking and designing for sustainability. In this research, a nascent neuroimaging technology-functional near-infrared spectroscopy (fNIRS) has been used to measure the cognition of engineering students thinking for sustainability. fNIRS enables us to investigate how sustainability requirements in design influence the cognition of design process, and how different concept generation ways help students understand sustainability. The first manuscript provides evidence that sustainability in design constraint, limiting the number of solutions for design and decreasing the cognitive efficiency to generate solutions. Senior engineering students generated fewer solutions than freshmen, however, seniors showed advantage to handle sustainability requirements with higher cognitive efficiency. The second manuscript investigates the cognitive difference of two concept generation ways using concept listing or mapping. The results indicate that concept mapping leads to more concepts related to sustainability and enables the cognitive load shift from regions associated with sequencing processing to regions associated with cognitive flexibility. This research demonstrates the feasibility of fNIRS applied in engineering research for sustainability and provides more understanding of the cognitive requirements for sustainability thinking.
|
12 |
Cognitive Neuroscientific Research for Developing Diagram Use Instruction for Effective Mathematical Word Problem Solving / 図表を活かして文章題を効率的に解く指導の認知神経科学的研究Ayabe, Hiroaki 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(教育学) / 甲第24353号 / 教博第283号 / 新制||教||214(附属図書館) / 京都大学大学院教育学研究科教育科学専攻 / (主査)教授 MANALO Emmanuel, 教授 楠見 孝, 准教授 野村 理朗 / 学位規則第4条第1項該当 / Doctor of Philosophy (Education) / Kyoto University / DGAM
|
13 |
Task-Related Hemodynamic Response Alterations During Slacklining: An fNIRS Study in Advanced SlacklinersSeidel-Marzi, Oliver, Hähner, Susanne, Ragert, Patrick, Carius, Daniel 21 December 2023 (has links)
The ability to maintain balance is based on various processes of motor control in complex
neural networks of subcortical and cortical brain structures. However, knowledge on
brain processing during the execution of whole-body balance tasks is still limited. In the
present study, we investigated brain activity during slacklining, a task with a high demand
on balance capabilities, which is frequently used as supplementary training in various
sports disciplines as well as for lower extremity prevention and rehabilitation purposes
in clinical settings. We assessed hemodynamic response alterations in sensorimotor
brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST)
and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe
task-related differences between both conditions as well as associations between
cortical activity and slacklining experience. While our results revealed hemodynamic
response alterations in sensorimotor brain regions such as primary motor cortex (M1),
premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions,
we did not observe differential effects between ST and WA nor associations between
cortical activity and slacklining experience. In summary, these findings provide novel
insights into brain processing during a whole-body balance task and its relation to
balance expertise. As maintaining balance is considered an important prerequisite in
daily life and crucial in the context of prevention and rehabilitation, future studies
should extend these findings by quantifying brain processing during task execution on a
whole-brain level.
|
14 |
The Cortical Effects of Object Affordances on Motor Action Priming Used in Rapid Balance Recovery ActionsFoglia, Stevie January 2019 (has links)
There is considerable evidence to suggest that object affordances (see Gibson, 1966) can serve to moderate volitional responses by “priming” the visuomotor system toward certain actions (e.g., Tucker & Ellis, 1998). Typically, these studies assume that shorter voluntary reaction time latencies reflect more efficient movement planning. Questions remain however, as to whether object affordances offer the same motor priming benefits in situations where the temporal window to initiate motor action precludes volitional movements (e.g., during an unexpected balance perturbation). The efficiency of balance reactions to a perturbation is dependent upon the ability for the motor system to generate short latency actions at the onset of instability. Due to the rapid nature of these actions, they are suggested to be regulated by information received prior to the perturbation. In this study, participants sat in a custom-built chair that delivered posterior perturbations and, on each trial, were presented with two of three types of stimuli within their reach (two graspable poles that varied in orientation and a flat non-graspable control). They were instructed to reach and grasp one of the poles at the moment of perturbation so as to mitigate the tilt. To assess cortical activity that may be indicative of motor planning in response to the perception of object affordances, changes in oxyhemoglobin (oxy-Hb) in the right and left premotor cortices were measured using a continuous wave fNIRS system. Results revealed a significant increase (F= 4.62, p= .043) in oxy-Hb in the right and left hemisphere (M = .023 µM) in response to objects that afford an optimal form of grasping action (mitigating excessive supination or pronation of the hand), compared to when no grasping opportunity was present (M = -.051 µM). These results suggest that affordances may be used to prime the system in the event of a balance threat. / Thesis / Master of Science (MSc)
|
15 |
Research on Neurobehavioral and Physiological Characteristics of Behavioral Addiction / 行動依存症の統合生理学的研究浅岡, 由衣 23 May 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25485号 / 理博第5066号 / 新制||理||1722(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 明里 宏文, 准教授 足立 幾磨, 教授 今井 啓雄 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
16 |
Low Frequency Oscillations of Hemodynamic Parameters as a Novel Diagnostic Measure for Traumatic Brain InjuryGomez Carrillo, Andrea 24 August 2021 (has links)
No description available.
|
17 |
Predicting Cognitive Workload with Measures from Functional Near-Infrared Spectroscopy (fNIRS) and Heart RateDuany, John 01 August 2013 (has links)
The objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood oxygenation levels in the prefrontal cortex of individuals operating in hazardous work environments, students with learning disabilities, and in research for military training. This is due to the fNIR device being highly mobile, inexpensive, and able to produce a high-spatial resolution of the dorsolateral prefrontal cortex during executive functioning. Heart Rate will be measured by an Electrocardiogram, which will be used in concordance with fNIR oxygenation levels to predict if an individual is in a condition that produces low or high mental workload. Successfully utilizing heart rate and blood oxygenation data as predictors of cognitive workload may validate implementing multiple physiological devices together in real-time and may be a more accurate solution for preventing excessive workload.
|
18 |
The Brain Differentially Prepares Inner and Overt Speech Production: Electrophysiological and Vascular EvidenceStephan, Franziska, Saalbach, Henrik, Rossi, Sonja 13 April 2023 (has links)
Speech production not only relies on spoken (overt speech) but also on silent output (inner speech). Little is known about whether inner and overt speech are processed differently and which neural mechanisms are involved. By simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), we tried to disentangle executive control from motor and linguistic processes. A preparation phase was introduced additionally to the examination of overt and inner speech directly during naming (i.e., speech execution). Participants completed a picture-naming paradigm in which the pure preparation phase of a subsequent speech production and the actual speech execution phase could be differentiated. fNIRS results revealed a larger activation for overt rather than inner speech at bilateral prefrontal to parietal regions during the preparation and at bilateral temporal regions during the execution phase. EEG results showed a larger negativity for inner compared to overt speech between 200 and 500 ms during the preparation phase and between 300 and 500 ms during the execution phase. Findings of the preparation phase indicated that differences between inner and overt speech are not exclusively driven by specific linguistic and motor processes but also impacted by inhibitory mechanisms. Results of the execution phase suggest that inhibitory processes operate during phonological code retrieval and encoding.
|
19 |
Inner versus Overt Speech Production: Does This Make a Difference in the Developing Brain?Stephan, Franzisk, Saalbach, Henrik, Rossi, Sonja 13 April 2023 (has links)
Studies in adults showed differential neural processing between overt and inner speech. So far, it is unclear whether inner and overt speech are processed differentially in children. The present study examines the pre-activation of the speech network in order to disentangle domain-general executive control from linguistic control of inner and overt speech production in 6- to 7-year-olds by simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Children underwent a picture-naming task in which the pure preparation of a subsequent speech production and the actual execution of speech can be differentiated. The preparation phase does not represent speech per se but it resembles the setting up of the language production network. Only the fNIRS revealed a larger activation for overt, compared to inner, speech over bilateral prefrontal to parietal regions during the preparation phase. Findings suggest that the children’s brain can prepare the subsequent speech production. The preparation for overt and inner speech requires different domain-general executive control. In contrast to adults, the children’s brain did not show differences between inner and overt speech when a concrete linguistic content occurs and a concrete execution is required. This might indicate that domain-specific executive control processes are still under development.
|
20 |
Evaluating Competition between Verbal and Implicit Systems with Functional Near-Infrared SpectroscopySchiebel, Troy A 01 January 2016 (has links)
In category learning, explicit processes function through the prefrontal cortex (PFC) and implicit processes function through the basal ganglia. Research suggested that these two systems compete with each other. The goal of this study was to shed light on this theory. 15 undergraduate subjects took part in an event-related experiment that required them to categorize computer-generated line-stimuli, which varied in length and/or angle depending on condition. Subjects participated in an explicit "rule-based" (RB) condition and an implicit "information-integration" (II) condition while connected to a functional near-infrared spectroscopy (fNIRS) apparatus, which measured the hemodynamic response (HR) in their PFC. Each condition contained 2 blocks. We hypothesized that the competition between explicit and implicit systems (COVIS) would be demonstrated if, by block 2, task-accuracy was approximately equal across conditions with PFC activity being comparatively higher in the II condition. This would indicate that subjects could learn the categorization task in both conditions but were only able to decipher an explicit rule in the RB condition; their PFC would struggle to do so in the II condition, resulting in perpetually high activation. In accordance with predictions, results revealed no difference in accuracy across conditions with significant difference in channel activation. There were channel trends (p < .1) which showed PFC activation decrease in the RB condition and increase in the II condition by block 2. While these results support our predictions, they are largely nonsignificant, which could be attributed to the event-related design. Future research should utilize a larger samples size for improved statistical power.
|
Page generated in 0.115 seconds