11 |
Análise da interação estaca-solo-superestrutura com o acoplamento MEC-MEF / Pile-soil-superstructure interaction using BEM-FEM couplingAna Paula Ferreira Ramos 26 September 2013 (has links)
Fundações do tipo radier estaqueado são aquelas formadas pelos elementos estruturais de placa e estacas (elementos de barras) e o solo . Ao contrário de outras tipos de fundações, onde a carga da superestrutura é transferida ao solo pelo radier ou pelas estacas apenas, no radier estaqueado a contribuição das estacas, bem como a do radier são consideradas. As estacas transferem as cargas da superestrutura ao solo e, assim, permitem a redução dos recalques de uma forma muito econômica. O objetivo do presente trabalho é a análise da interação solo-estrutura através do acoplamento MEC-MEF. O solo é considerado um semi-espaço homogêneo, elástico e linear governado pela equação de Navier e modelado pelo Método dos Elementos de Contorno (MEC), admitindo a solução fundamental de Mindlin. As estacas são modeladas pelo Método dos Elementos Finitos (MEF) e cada elemento possui quatro nós. Além disso, as estacas podem receber forças horizontais, verticais e momentos. A tensão de cisalhamento ao longo da estaca é aproximada por um polinômio do segundo grau e as forças na direção horizontal são aproximadas por um polinômio do quarto grau. O elemento de fundação que faz a ligação do pilar com a estaca é representado por uma placa de grande rigidez, que apresenta o comportamento de um bloco. A interação entre o radier estaqueado e o solo é feita através da reação resultante da interação estaca-solo, nos nós com estaca. A interface radier-solo é dividida em elementos triangulares e para a reação do solo considera-se a variação linear ao longo de cada elemento. A superestrutura é modelada pelo MEF. Vários exemplos de interação solo-estrutura são estudados nesta tese, e mostram que as soluções obtidas a partir do programa computacional desenvolvido no presente trabalho denominado SSI estão de acordo com outros autores. / Piled raft foundations are structures consisting of piles, the raft and the soil. Unlike classical foundation design where the building load is either transferred by the raft or the piles alone, in a piled raft foundation the contribution of the piles as well as the raft is taken into account. The piles transfer a part of the building loads into the soil and thereby allow the reduction of settlement in a very economic way. The objective of the present work is the analysis of soil-structure interaction using BEM-FEM coupling. The soil, assumed to be an elastic linear homogeneous half space is governed by Navier\'s equation and it is modeled by the Boundary Elements Method (BEM) using Mindlin\'s fundamental solution. The piles are modeled by the Finite Element Method (FEM) with four nodes each. In addition, the piles can received horizontal and vertical forces and bending moments. The shear traction along the pile is approximated by a second-degree polynomial and the tractions in the horizontal direction are approximated by a fourth degree polynomial. The cap of the pile group is assumed to be rigid. The interaction between the raft and soil is made through the subgrade reaction. The soil-cap interface is divided into triangular elements and the subgrade reaction is assumed to vary linearly across each element. The building\'s structure is modeled by FEM. Several soil structure interaction examples are studied in this thesis, and they show that the solutions obtained from program SSI are in good agreement with others authors.
|
12 |
SOLUÇÕES FUNDAMENTAIS DE OPERADORES LINEARES DE COEFICIENTES CONSTANTES / FUNDAMENTAL SOLUTIONS OF LINEAR OPERATORS CONSTANT COEFFICIENTSNunes, Luciele Rodrigues 09 March 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this thesis we present a proof of the Malgrange-Ehrenpreis theorem, which states that every operator with constant coefficients non identically zero has a fundamental solution. / Nessa dissertação apresentamos uma demonstração do Teorema de Malgrange-Ehrenpreis, que afirma que todo operador de coeficientes constantes não identicamente nulo tem uma
solução fundamental.
|
13 |
Análise da estabilidade estatíca e dinâmica de vigas pelo método dos elementos de contornoPassos, José Jarbson Salustiano dos 29 September 2014 (has links)
Made available in DSpace on 2015-05-08T14:59:59Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2498464 bytes, checksum: f14d53abab590dc87f310472963c08ad (MD5)
Previous issue date: 2014-09-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work new solutions based on the direct Boundary Element Method (BEM)
for static and dynamic stability beam problems are presented. Both Euler-Bernoulli and
Timoshenko models are used to represent the beam responses. All discussions on
mathematical steps to write down the BEM representation are presented. Alternative
fundamental solutions for static and dynamic Euler-Bernoulli beam stability problems are
proposed, resulting in the simpler forms than conventional fundamental solutions
commonly used for the problems. In addition, the effects of Pasternak elastic foundations
are incorporated into the expressions of proposed fundamental solutions. For the case of
the Timoshenko static and dinamic stability, all the direct BEM representation (integral
equations, fundamental solutions and algebraic equations) here proposed are inovative.
Their fundamental solutions incorporate Pasternak foundation effects as well. A
convenient strategy is also presented in order to deal with elastic end supports and
discontinuities at beam domain such as abrupt change of cross section geometry (stepped
beams), internetiated axial load, rigid or elastic supports at beam domain. Numerical
examples incorporating various types of boundary conditions and domain discontinuities
in order to validate the proposed BEM solution are presented. / Neste trabalho, novas soluções, baseadas no Método dos Elementos de Contorno
(MEC) direto, são apresentadas para os problemas de estabilidade estática e dinâmica de
vigas. Ambos modelos de Euler-Bernoulli e Timoshenko são usados para representar as
respostas da viga. Todas as discussões sobre os passos matemáticos para escrever a
representação do MEC são apresentadas. Soluções fundamentais alternativas são propostas
para o problema da estabilidade estática e dinâmica de vigas de Euler-Bernoulli,
resultando em formas mais simples que as comumente usadas para esses problemas. Além
disso, os efeitos de fundações elásticas de Pasternak são incorporadas nas expressões das
soluções fundamentais propostas. Para o caso da estabilidade estática e dinâmica de
Timoshenko, toda a representação do MEC (equações integrais, soluções fundamentais e
equações algébricas) aqui proposta é inovadora. Suas soluções fundamentais incorporam
os efeitos da base elástica de Pasternak também. Uma estratégia conveniente é também
apresentada para lidar com apoios elásticos no contorno e com discontinuidades no
domínio tais como: mudança abrupta de geometria da seção transversal (viga escalonada),
carga axial intermediária, apoios rígidos ou elásticos no domínio. Exemplos numéricos
incorporando vários tipos de condições de contorno e discontinuidades no domínio são
apresentadas para validar as soluções do MEC propostas.
|
14 |
Lineární teorie diferenciálních rovnic se zpožděním / Linear theory of delayed differential equationsMarková, Hana January 2021 (has links)
It the thesis, we study retarded functional differential equations. As a result of the Banach fixed point theorem, it is easy to show that there exists a unique solution to such problems. Alas, this theorem gives us no information on the form of the solution. Therefore, we are particularly interested in expressing it. We achieve that by applying Laplace transform to both sides of the equation, we get a solution to this modified problem and subsequently claim that we can apply the inverse Laplace transform to express the solution of the former problem. At the end of the thesis, we formulate and prove the exponential estimate of the solution. 1
|
15 |
Solutions fondamentales en Géo-Poro-Mécanique multiphasique pour l'analyse des effets de site sismiques / Fundamental solutions in multiphase Geo-Poro-Mechanics for the analysis of seismic site effectsMaghoul, Pooneh 12 November 2010 (has links)
Ce travail de recherche se situe dans le cadre du développement de la méthode des éléments de frontière (BEM) pour les milieux poreux multiphasiques. À l'heure actuelle, l'application de la BEM aux pr oblèmes des milieux poreux non-saturés est encore limitée, car l'expression analytique exacte de la solution fondamentale n'a pas été obtenue, ni dans le domaine transformé ni dans le domaine réel. Ceci provient de la complexité du système d'équations régissant le comportement des milieux poreux non-saturés. Les développements de la BEM pour les sols non-saturés effectués au cours de cette thèse sont basés sur les modèles thermo-hydro-mécanique (THHM) et hydro-mécanique (HHM) présentés dans la première partie de ce mémoire. Ces modèles phénoménologiques basés sur la théorie de la poromécanique et les acquis expérimentaux sont obtenus dans le cadre du modèle mathématique présenté par Gatmiri (1997) et Gatmiri et al. (1998). Après avoir présenté les modèles THHM et HHM, on établit pour la première fois les équations intégrales de frontière et les solutions fondamentales associées pour un milieu poreux non-saturé sous chargement quasi-statique pour les deux cas isotherme (2D dans le domaine de Laplace) et non-isotherme (2D et 3D dans les domaines de Laplace et temporel). Aussi, les équations intégrales de frontière ainsi que les solutions fondamentales 2D et 3D (dans le domaine de Laplace) pour le modèle dynamique couplé des sols non-saturés sont obtenues. Ensuite, les formulations d'éléments de frontière (BEM) basées sur la méthode quadrature de convolution (MQC) concernant les milieux poreux saturé et non-saturé sous chargement quasi-statique isotherme et dynamique sont implémentées dans le code de calcul « HYBRID ». Ayant intégrées les formulations de BEM pour les problèmes de propagation d'ondes ainsi que pour les problèmes de consolidation dans les milieux poreux saturés et non-saturés, il semble que nous ayons fourni à l'heure actuelle le premier code de calcul aux éléments de frontière (BEM) qui modélise les différents problèmes dans les sols secs, saturés et non-saturés. Une fois le code vérifié et validé, des études paramétriques portant sur des effets de site sismiques sont effectuées. Le but recherché est d'aboutir à un critère simple, directement exploitable par les ingénieurs, combinant les caractéristiques géométriques et les caractéristiques du sol, permettant de prédire l'amplification du spectre de réponse en accélération dans des vallées sédimentaires aussi bien que vides / The purpose of this dissertation is to develop a boundary element method (BEM) for multiphase porous media. Nowadays, the application of the BEM for solving problems of unsaturated porous media is still limited, because no fundamental solution exists in the published literature, neither in the frequency nor time domain. This fact rises from the complexity of the coupled partial differential equations governing the behaviour of such media. The developments of the BEM for the unsaturated soils carried out during this thesis are based on the thermo-hydro-mechanical (THHM) and hydro-mechanical (HHM) models presented in the first part of this dissertation. These phenomenological models are presented based on the experimental observations and with respect to the poromechanics theory within the framework of the suction-based mathematical model presented by Gatmiri (1997) and Gatmiri et al. (1998). After having presented the THHM and HHM models, for the first time, one establishes the boundary integral equations (BIE) and the associated fundamental solutions for the unsaturated porous media subjected to quasi-static loading for both isothermal (2D in the Laplace transform domain) and non-isothermal (2D and 3D in Laplace transform and time domains) cases. Also, the boundary integral equations as well as the fundamental solutions (2D and 3D in the Laplace transform domain) are obtained for the fully coupled dynamic model of unsaturated soils.In the next step, the boundary element formulations (BEM) based on the convolution quadrature method (CQM) regarding the saturated and unsaturated porous media subjected to isothermal quasi-static and dynamic loadings are implemented via the computer code HYBRID. Having integrated the BEM formulations for the wave propagation, as well as the consolidation problems in the saturated and unsaturated porous media, it seems that now the first boundary element code is obtained that can model the various problems in dry, saturated and unsaturated soils. Once the code is verified and validated, parametric studies on seismic site effects are carried out. The aim is to achieve a simple criterion directly usable by engineers, combining the topographical and geological characteristics of the soil, to predict the amplification of acceleration response spectra in sedimentary as well as hollow valleys
|
16 |
Flexão e estabilidade de barras usando o modelo de Bickford-Reddy: uma abordagem pelo método dos elementos de contornoMaia, Cibelle Dias de Carvalho Dantas 22 April 2016 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-07-18T12:41:11Z
No. of bitstreams: 1
arquivototal.pdf: 2094299 bytes, checksum: 783d6f9949086fb75e4a51fc3adbd48a (MD5) / Made available in DSpace on 2017-07-18T12:41:11Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2094299 bytes, checksum: 783d6f9949086fb75e4a51fc3adbd48a (MD5)
Previous issue date: 2016-04-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, new solutions based on the Boundary Element Method (BEM) are established for the linear analysis of bending and stability problems of Reddy-Bickford beams. All mathematical steps to write the BEM representation are properly presented: transformation of governing differential equations into equivalent integral equations, deduction of fundamental solutions, formation and solution of algebraic representation.In addition, elastic foundations (winkler and pasternak’s types) attached to Reddy-Bickford beams are solved by BEM as well. It is also addressed a convenient strategy for discontinuities in the area such as abrupt change in geometry of the cross section (stepped beam), intermediate axial load, intermediate supports (continuous beam). Numerical examples incorporating various types of discontinuities and boundary conditions in the field are presented to validate the solutions proposed BEM. / Neste trabalho, novas soluções, baseadas no Método dos Elementos de Contorno (MEC), são estabelecidas para a análise linear de problemas de flexão e estabilidade de barras de Bickford-Reddy. Todos os passos matemáticos para estabelecer a representação do MEC são apresentados: transformações das equações diferenciais governantes em equações integrais equivalentes, dedução das soluções fundamentais, obtenção e solução do sistema alébrico. Além disso, fundações elásticas (Winkler e Pasternak) em barras de Bickford-Reddy também são analisados pelo MEC. É também abordada uma conveniente estratégia para de discontinuidades no domínio tais como: mudança abrupta de geometria da seção transversal (viga escalonada), carga axial intermediária, apoios rígidos no domínio (viga contínua). Exemplos numéricos incorporando vários tipos de condições de contorno e discontinuidades no domínio são apresentadas para validar as soluções do MEC propostas.
|
Page generated in 0.0995 seconds