Spelling suggestions: "subject:"fundamental solutionution"" "subject:"dundamental solutionution""
1 |
Unitary solutions of partial differential equationsTarkhanov, Nikolai January 2005 (has links)
We give an explicit construction of a fundamental solution for an arbitrary non-degenerate partial differential equation with smooth coefficients.
|
2 |
Application Of The Boundary Element Method To Parabolic Type EquationsBozkaya, Nuray 01 June 2010 (has links) (PDF)
In this thesis, the two-dimensional initial and boundary value problems governed by unsteady partial differential equations are solved by making use of boundary element techniques. The boundary element method (BEM) with time-dependent fundamental solution is presented as an efficient procedure for the solution of diffusion, wave and convection-diffusion equations. It interpenetrates the equations in such a way that the boundary solution is advanced to all time levels, simultaneously. The solution at a required interior point can then be obtained by using the computed boundary solution. Then, the coupled system of nonlinear reaction-diffusion equations and the magnetohydrodynamic (MHD) flow equations in a duct are solved by using the time-domain BEM. The numerical approach is based on the iteration between the equations of the system. The advantage of time-domain BEM are still made use of utilizing large time increments. Mainly, MHD flow equations in a duct having variable wall conductivities are solved successfully for large values of Hartmann number. Variable conductivity on the walls produces coupled boundary conditions which causes difficulties in numerical treatment of the problem by the usual BEM. Thus, a new time-domain BEM approach is derived in order to solve these equations as a whole despite the coupled boundary conditions, which is one of the main contributions of this thesis.
Further, the full MHD equations in stream function-vorticity-magnetic induction-current density form are solved. The dual reciprocity boundary element method (DRBEM), producing only boundary integrals, is used due to the nonlinear convection terms in the equations. In addition, the missing boundary conditions for vorticity and current density are derived with the help of coordinate functions in DRBEM. The resulting ordinary differential equations are discretized in time by using unconditionally stable Gear' / s scheme so that large time increments can be used. The Navier-Stokes equations are solved in a square cavity up to Reynolds number 2000. Then, the solution of full MHD flow in a lid-driven cavity and a backward facing step is obtained for different values of Reynolds, magnetic Reynolds and Hartmann numbers. The solution procedure is quite efficient to capture the well known characteristics of MHD flow.
|
3 |
Numerical Computations with Fundamental Solutions / Numeriska beräkningar med fundamentallösningarSundqvist, Per January 2005 (has links)
Two solution strategies for large, sparse, and structured algebraic systems of equations are considered. The first strategy is to construct efficient preconditioners for iterative solvers. The second is to reduce the sparse algebraic system to a smaller, dense system of equations, which are called the boundary summation equations. The proposed preconditioners perform well when applied to equations that are discretizations of linear first order partial differential equations. Analysis shows that also very simple iterative methods converge in a number of iterations that is independent of the number of unknowns, if our preconditioners are applied to certain scalar model problems. Numerical experiments indicate that this property holds also for more complicated cases, and a flow problem modeled by the nonlinear Euler equations is treated successfully. The reduction process is applicable to a large class of difference equations. There is no approximation involved in the reduction, so the solution of the original algebraic equations is determined exactly if the reduced system is solved exactly. The reduced system is well suited for iterative solution, especially if the original system of equations is a discretization of a first order differential equation. The technique is used for several problems, ranging from scalar model problems to a semi-implicit discretization of the compressible Navier-Stokes equations. Both strategies use the concept of fundamental solutions, either of differential or difference operators. An algorithm for computing fundamental solutions of difference operators is also presented.
|
4 |
O Teorema de Malgrange-Ehrenpreis / The Malgrange-Ehrenpreis theoremDaniel Pinheiro Sobreira 16 July 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / No primeiro capÃtulo da dissertaÃÃo, Ã apresentada uma breve introduÃÃo do trabalho. Em seguida, no segundo capÃtulo, sÃo demonstradas noÃÃes e propriedades de espaÃos vetoriais topolÃgicos. Dando seguimento ao presente estudo,
no terceiro capÃtulo, efetua-se a abordagem da teoria das distribuiÃÃes, onde se proporciona, como exemplo a distribuiÃÃo delta de Dirac, na qual, por conseguinte,
sÃo definidas ainda operaÃÃes com distribuiÃÃes, entre elas a convoluÃÃo de uma distribuiÃÃo com uma funÃÃo teste, e por fim, ainda no mesmo capitulo à feito uma anÃlise das distribuiÃÃes com suporte compacto. No capÃtulo quatro, por sua vez, explana-se a transformada de Fourier e suas propriedades, bem como, propriedades de funÃÃes que pertencem ao espaÃo de Schwartz e ainda, à feito um estudo das distribuiÃÃes temperadas. Finalmente, no quinto
e Ãltimo capÃtulo à demonstrado o teorema de Malgrange-Ehrenpreis, que à a temÃtica principal do trabalho elaborado, o qual afirma que todo operador diferencial com coeficientes constantes tem uma soluÃÃo fundamental. Destarte,
à implementado um estudo de alguns exemplos afins ao teorema. / In the first chapter of the dissertation, is a brief introduction. Then in the second chapter, are shown notions and properties of topological vector spaces.
Following the present study, the third chapter, is effected the approach to the theory of distributions, which provides, as an example the Dirac delta
distribution, in which, therefore, are dened further distribution operations, including the convolution of a distribution with a test function, and finally, still
in same chapter an analysis is made of distributions with compact support. In chapter four, in turn, explains to the Fourier transform and its properties, as well as properties of functions belonging to Schwartz space and also a study is made of tempered distributions. Finally, the fifth and final chapter is shown the Malgrange-Ehrenpreis theorem, which is the main theme of the work done,which states that any differential operator with constant coecients has a fundamental
solution. Thus, it implemented a study of some examples related to the theorem.
|
5 |
Aplikace metody hraničních prvků na některé problémy trhliny v blízkosti bi-materiálového rozhraní / An aplication of the boundary element method to the problem of the crack in the vicinity of the bi-material interfaceSedláček, Stanislav January 2012 (has links)
There are many shape and other changes in the engineering constructions. These changes cause the concentration of the stress. There is a higher probability of the crack initiation in the vicinity of these stress concentrators. The problems of the crack can be solved nowadays only with help of sufficient numeric tools. The Boundary Element Method is one of the many numerical tools which offer the solution of some problems of the mechanics. The goal of this diploma thesis is to formulate boundary element method for the plane problem of the linear elasticity for izotropic material with different types of the stress concentrators.
|
6 |
Estimations gaussiennes des noyaux de la chaleur / Gaussian estimates for heat kernelsKayser, Laurent 11 December 2015 (has links)
Nous revisitons la méthode classique des paramétrices pour en déduire une minoration et une majoration gaussiennes, pour la solution fondamentale d'un opérateur parabolique général sous forme non divergentielle. Nous utilisons ensuite le fait que la fonction de Neumann Green, d'un opérateur parabolique général sur un ouvert borné régulier, peut être construite comme somme de la solution fondamentale et d'une intégrale de type simple couche parabolique pour établir une minoration gaussienne pour cette fonction de Neumann Green. Le point clef de la preuve réside dans l'effet régularisant, en temps, de l'intégrale de type simple couche. Nous démontrons aussi que cette approche peut être adaptée pour démontrer une minoration gaussienne pour la fonction de Green-Neumann correspondante à l'opérateur de Laplace-Beltrami sur un ouvert régulier d'une variété riemannienne compacte sans bord. Nous démontrons ensuite une nouvelle majoration gaussienne pour la fonction de Neumann Green correspondante à l'opérateur de Laplace-Beltrami sur un ouvert Lipschitz d'une variété riemannienne complète. L'intérêt de cette nouvelle majoration est qu'elle ne contient pas le terme habituel d'une exponentielle en temps. Finalement, comme application des estimations gaussiennes, nous donnons un résultat de compacité des potentiels isospectraux en relation avec une formule asymptotique pour les noyaux de la chaleur / We revisit the parametrix method in order to obtain a gaussian two-sided bound for the fundamental solution of a general parabolic operator which is not in a divergence form. Then we use the fact that the Neumann Green function of a general parabolic operator on a regular bounded domain can be constructed as a perturbation of the fundamental solution by a simple-layer potential in order to establish a Gaussian lower bound for this Neumann Green function. The key point of the proof lies in the time-regularising effect of the single-layer potential. We also prove that this method can be adapted to get a lower Gaussian bound for the Neumann heat kernel of the Laplace-Beltrami operator on an open subset of a compact Riemannian manifold. In a second part, we prove a new Gaussian upper bound for the Neumann heat kernel of the Laplace-Beltrami operator on a Lipschitz domain of a complete Riemannian manifold. The principal interest of this new upper bound is that we do not have the usual exponentiel terme in time in this upper bound. In a last part, as an application of the Gaussian estimates, we give a compactness result of isospectral potentials which is in relation to an asymptotic formule for the heat kernels
|
7 |
Análise da interação estaca-solo-superestrutura com o acoplamento MEC-MEF / Pile-soil-superstructure interaction using BEM-FEM couplingRamos, Ana Paula Ferreira 26 September 2013 (has links)
Fundações do tipo radier estaqueado são aquelas formadas pelos elementos estruturais de placa e estacas (elementos de barras) e o solo . Ao contrário de outras tipos de fundações, onde a carga da superestrutura é transferida ao solo pelo radier ou pelas estacas apenas, no radier estaqueado a contribuição das estacas, bem como a do radier são consideradas. As estacas transferem as cargas da superestrutura ao solo e, assim, permitem a redução dos recalques de uma forma muito econômica. O objetivo do presente trabalho é a análise da interação solo-estrutura através do acoplamento MEC-MEF. O solo é considerado um semi-espaço homogêneo, elástico e linear governado pela equação de Navier e modelado pelo Método dos Elementos de Contorno (MEC), admitindo a solução fundamental de Mindlin. As estacas são modeladas pelo Método dos Elementos Finitos (MEF) e cada elemento possui quatro nós. Além disso, as estacas podem receber forças horizontais, verticais e momentos. A tensão de cisalhamento ao longo da estaca é aproximada por um polinômio do segundo grau e as forças na direção horizontal são aproximadas por um polinômio do quarto grau. O elemento de fundação que faz a ligação do pilar com a estaca é representado por uma placa de grande rigidez, que apresenta o comportamento de um bloco. A interação entre o radier estaqueado e o solo é feita através da reação resultante da interação estaca-solo, nos nós com estaca. A interface radier-solo é dividida em elementos triangulares e para a reação do solo considera-se a variação linear ao longo de cada elemento. A superestrutura é modelada pelo MEF. Vários exemplos de interação solo-estrutura são estudados nesta tese, e mostram que as soluções obtidas a partir do programa computacional desenvolvido no presente trabalho denominado SSI estão de acordo com outros autores. / Piled raft foundations are structures consisting of piles, the raft and the soil. Unlike classical foundation design where the building load is either transferred by the raft or the piles alone, in a piled raft foundation the contribution of the piles as well as the raft is taken into account. The piles transfer a part of the building loads into the soil and thereby allow the reduction of settlement in a very economic way. The objective of the present work is the analysis of soil-structure interaction using BEM-FEM coupling. The soil, assumed to be an elastic linear homogeneous half space is governed by Navier\'s equation and it is modeled by the Boundary Elements Method (BEM) using Mindlin\'s fundamental solution. The piles are modeled by the Finite Element Method (FEM) with four nodes each. In addition, the piles can received horizontal and vertical forces and bending moments. The shear traction along the pile is approximated by a second-degree polynomial and the tractions in the horizontal direction are approximated by a fourth degree polynomial. The cap of the pile group is assumed to be rigid. The interaction between the raft and soil is made through the subgrade reaction. The soil-cap interface is divided into triangular elements and the subgrade reaction is assumed to vary linearly across each element. The building\'s structure is modeled by FEM. Several soil structure interaction examples are studied in this thesis, and they show that the solutions obtained from program SSI are in good agreement with others authors.
|
8 |
On the Shape Parameter of the MFS-MPS SchemeLin, Guo-Hwa 23 August 2010 (has links)
In this paper, we use the newly developed method of particular solution (MPS) and one-stage method of fundamental solution (MFS-MPS) for solving partial differential equation (PDE). In the 1-D Poisson equation, we prove the solution of MFS-MPS is converge to Spectral Collocation Method using Polynomial, and show that the numerical solution similar to those of using the method of particular solution (MPS), Kansa's method, and Spectral Collocation Method using Polynomial (SCMP). In 2-D, we also test these results for the Poisson equation and find the error behaviors.
|
9 |
Generalizations of a Laplacian-Type Equation in the Heisenberg Group and a Class of Grushin-Type SpacesChilders, Kristen Snyder 01 January 2011 (has links)
In [2], Beals, Gaveau and Greiner find the fundamental solution to a 2-Laplace-type equation in a class of sub-Riemannian spaces. This fundamental solution is based on the well-known fundamental solution to the p-Laplace equation in Grushin-type spaces [4] and the Heisenberg group [6]. In this thesis, we look to generalize the work in [2] for a p-Laplace-type equation. After discovering that the "natural" generalization fails, we find two generalizations whose solutions are based on the fundamental solution to the p-Laplace equation.
|
10 |
Análise estática e dinâmica de vigas laminadas pelo Método dos Elementos de ContornoNascimento Júnior, Paulo Cavalcante do 26 July 2013 (has links)
Made available in DSpace on 2015-05-08T14:59:51Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2509612 bytes, checksum: f63968d7b069e4d6a16ca4bafd49aa7b (MD5)
Previous issue date: 2013-07-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The laminated composite beams are structural components which have aroused great interest in mechanical industry due to providing components of high strength-to-weight ratio, which make them particularly suitable to the automotive and aerospace industry. In recent decades the solutions of mathematical models for laminated beam have been established in a analytical or numerical forms. The latter have been built based on finite element method (FEM) philosophy. In this work a new solution based on Boundary Element Method (BEM) for both classical and for first order laminated beam theory for static loading is established. In addition, the BEM solution is extended to deal with harmonic loading under classic beams theory hypothesis. Discussions on mathematical steps to write down both integral equations and fundamental solutions for laminated beam problem are properly made. From the formulations here proposed, codes are implemented in C++, providing displacements and efforts at the boundary and domain of the beam. In addition, numerical results for typical cases are presented as well. / As vigas de compósitos laminados são componentes estruturais que têm despertado grande interesse na indústria mecânica, principalmente por prover componentes de alta razão resistência-peso, o que as tornam particularmente aplicável à indústria automobilística e aeronáutica. Nas últimas décadas as soluções dos modelos matemáticos de vigas laminadas têm sido estabelecidas na forma analítica ou numérica. Para o último caso, as soluções têm sido construídas na filosofia do método dos elementos finitos (MEF). Nesta dissertação uma nova solução baseada no Método dos Elementos de Contorno (MEC) para as teorias de vigas laminada clássica e de primeira ordem são estabelecidas para carregamentos estáticos. Além disso, a solução para o MEC é estendida para lidar com carregamento dinâmico harmônico sob a hipótese da Teoria Clássica de viga. Nas discussões sobre as etapas matemáticas são descritas as equações integrais e as soluções fundamentais para os problemas de vigas laminadas. A partir das formulações aqui propostas, códigos são implementados na linguagem C++, capaz de fornecer deslocamentos e esforços no contorno e no domínio da viga. Assim como, as frequências naturais. Além disso, os resultados numéricos, comparados com as soluções analíticas disponíveis na literatura, se mostraram de boa qualidade.
|
Page generated in 0.1453 seconds