• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Are decortication and autograft really necessary in posterior spinal fusion?. / CUHK electronic theses & dissertations collection

January 1998 (has links)
by Henry Yurianto. / "18 September 1998." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (p. 138-149). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
2

Putting it all together: Geophysical data integration

Kvamme, Kenneth L., Ernenwein, Eileen G., Menzer, Jeremy G. 01 January 2018 (has links)
The integration of information from multiple geophysical and other prospection surveys of archaeological sites and regions leads to a richer and more complete understanding of subsurface content, structure, and physical relationships. Such fusions of information occur within a single geophysical data set or between two or more geophysical and other prospection sources in one, two, or three dimensions. An absolute requirement is the accurate coregistration of all information to the same coordinate space. Data integrations occur at two levels. At the feature level, discrete objects that denote archaeological features are defined, usually subjectively, through the manual digitization of features interpreted in the data, although there is growing interest in automated feature identification and extraction. At the pixel level, distributional issues of skewness and outliers, high levels of noise that obfuscate targets of interest, and a lack of correlation between largely independent dimensions must be confronted. Nevertheless, successful fusions occur using computer graphic methods, simple arithmetic combinations, and advanced multivariate methods, including principal components analysis and supervised and unsupervised classifications. Four case studies are presented that illustrate some of these approaches and offer advancement into new domains.
3

The use of low intensity pulsed ultrasound and mesenchymal stem cells in enhancing spinal fusion: --an in vitro and in vivo study.

January 2009 (has links)
Hui, Fan Fong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 153-181). / Abstract also in Chinese. / Acknowledgements --- p.ii / Abstract --- p.iii / Abbreviations --- p.vii / Table of Contents --- p.ix / List of Tables --- p.xv / List of Tables --- p.xv / List of Figures --- p.xvi / Major Conference Presentations --- p.xix / Publications in Preparation --- p.xxii / Chapter Chapter 1 --- Study Background --- p.1 / Chapter 1. --- Introduction --- p.2 / Chapter 1.1. --- Spinal Deformities --- p.2 / Chapter 1.1.1. --- Treatment --- p.2 / Chapter 1.2. --- Spinal fusion --- p.4 / Chapter 1.2.1. --- Gold Standard of Spinal Fusion --- p.4 / Chapter 1.2.2. --- Decortication in Spinal Fusion --- p.4 / Chapter 1.2.3. --- Autograft in Spinal Fusion --- p.4 / Chapter 1.2.4. --- Local Factors Influencing Spinal Fusion --- p.5 / Chapter 1.2.5. --- Ultimate Goals of Spinal Fusion --- p.7 / Chapter 1.2.6. --- Limitations of Spinal fusion --- p.7 / Chapter 1.3. --- Alternatives of Different Components for Enhancing Spinal Fusion / Chapter 1.3.1. --- Bone Graft Substitute --- p.9 / Chapter 1.3.2. --- Bioactive Factors --- p.15 / Chapter 1.4. --- Limitations of the Alternative Methods in Spinal Fusion Enhancement --- p.19 / Chapter 1.4.1. --- BMPs --- p.19 / Chapter 1.4.2. --- Gene Therapy --- p.20 / Chapter 1.4.3. --- Biophysical Stimulation --- p.20 / Chapter 1.5. --- Recent Methods in Enhancing Spinal Fusion --- p.21 / Chapter 1.5.1. --- Low Intensity Pulsed Ultrasound --- p.21 / Chapter 1.5.2. --- Mesenchymal Stem Cells in Spinal Fusion --- p.24 / Chapter 1.6. --- Conclusion --- p.26 / Chapter Chapter 2 --- "Hypothesis, Objectives and Plan of Study" --- p.29 / Chapter 2. --- "Hypothesis, Objectives and Plan of Study" --- p.30 / Chapter 2.1 --- Study Hypothesis --- p.31 / Chapter 2.2 --- Study Objectives --- p.31 / Chapter 2.3 --- Plan of Study --- p.32 / Chapter 2.3.1 --- For First Objective --- p.32 / Chapter 2.3.2 --- For Second Objective --- p.32 / Chapter 2.3.3 --- For Third Objective --- p.33 / Chapter Chapter 3 --- In vitro Study of Effect of Low Intensity Pulsed Ultrasound on Mesenchymal Stem Cells --- p.34 / Chapter 3.1. --- Introduction --- p.35 / Chapter 3.2. --- Materials and Methods --- p.36 / Chapter 3.2.1. --- Experimental Animal --- p.36 / Chapter 3.2.2. --- Materials and Reagents --- p.36 / Chapter 3.2.2.1. --- Dulbecco,s Modified Eagle Medium (DMEM) --- p.36 / Chapter 3.2.2.2. --- Phosphate Buffered Saline (PBS) --- p.37 / Chapter 3.2.2.3. --- Osteogenic Medium (OS) --- p.37 / Chapter 3.2.2.4. --- Alkaline Phosphatase (ALP) Buffer --- p.37 / Chapter 3.2.2.5. --- ALP Substrate Buffer --- p.38 / Chapter 3.2.2.6. --- MTT Stock Solution --- p.38 / Chapter 3.2.2.7. --- MTT Working Solution --- p.38 / Chapter 3.2.2.8. --- Lysis buffer --- p.38 / Chapter 3.2.2.9. --- Alkaline Phosphatase (ALP) Working Reagents --- p.39 / Chapter 3.2.3. --- Isolation of Bone Marrow Derived Mesenchymal Stem Cells (BM derived MSCs) --- p.39 / Chapter 3.2.4. --- In vitro Low Intensity Pulsed Ultrasound Treatment --- p.40 / Chapter 3.2.4.1. --- In vitro LIPUS Devices --- p.40 / Chapter 3.2.4.2. --- Treatment Procedure and Experimantal Groupings --- p.40 / Chapter 3.2.5. --- Effect of LIPUS on Cell Viability and Osteogenesis in bone marrow derived-MSCs --- p.41 / Chapter 3.2.5.1. --- Cell Viability Assay --- p.41 / Chapter 3.2.5.2. --- Alkaline Phosphatase (ALP) Enzyme Activity --- p.42 / Chapter 3.2.5.3. --- Cell Morphology and Alkaline Phosphatase Cytochemistry --- p.42 / Chapter 3.2.6. --- Statistical Analysis --- p.43 / Chapter 3.3. --- Results --- p.43 / Chapter 3.3.1. --- Morphology --- p.43 / Chapter 3.3.2. --- Total Number of Viable Cells --- p.44 / Chapter 3.3.3. --- ALP Activity Absorbance --- p.44 / Chapter 3.3.4. --- ALP staining --- p.45 / Chapter 3.3.5. --- Qualitative Analysis --- p.45 / Chapter 3.3.6. --- Quantitative Analysis --- p.46 / Chapter 3.4. --- Discussion --- p.46 / Chapter 3.4.1. --- LIPUS have No Enhancing Effect on Proliferation of MSCs in Basal Medium Nor Osteogenic Medium --- p.47 / Chapter 3.4.2. --- LIPUS Stimulate Proliferation of MSCs in Early Period --- p.49 / Chapter 3.4.3. --- LIPUS Further Enhanced Osteogenesis of MSCs in Osteogenic Medium --- p.49 / Chapter 3.4.4. --- 10 mins LIPUS treatment for 7 days can positively enhance osteogenic differentiation --- p.50 / Chapter 3.4.5. --- Optimum Conditions of LIPUS was Cell Type Dependent --- p.51 / Chapter 3.4.6. --- LIPUS Promoted Osteogenesis in MSCs through Accelerated Mineralization --- p.52 / Chapter Chapter 4 --- Enhancement of Posterior Spinal Fusion The Effect of Tissue-Engineered MSC and Calcium Phosphate Ceramic composite treated with LIPUS in Vivo --- p.68 / Chapter 4.1. --- Introduction --- p.69 / Chapter 4.1.1. --- TCP Biomaterials --- p.70 / Chapter 4.2. --- Materials and Methods --- p.71 / Chapter 4.2.1. --- Materials and Reagents --- p.71 / Chapter 4.2.2. --- Preparation of MSC Derived Osteogenic Cells-tricalcium Phosphate Ceramics Composite --- p.73 / Chapter 4.2.3. --- Posterior Spinal Fusion Surgery --- p.74 / Chapter 4.2.4. --- In vivo LIPUS treatment --- p.75 / Chapter 4.2.5. --- Assessment of Fusion Mass --- p.76 / Chapter 4.2.6. --- Histology --- p.77 / Chapter 4.2.7. --- Statistical Analysis --- p.79 / Chapter 4.3. --- Results --- p.79 / Chapter 4.3.1. --- Fusion by Manual Palpation --- p.79 / Chapter 4.3.2. --- pQCT Analysis --- p.80 / Chapter 4.3.3. --- Histological Analysis --- p.81 / Chapter 4.4. --- Discussion --- p.85 / Chapter 4.4.1. --- Summary of the Findings from Different Assessment Methods --- p.85 / Chapter 4.4.2. --- Addition of MSCs to TCP ceramic in Spinal Fusion --- p.87 / Chapter 4.4.3. --- The Needs of Differentiated MSC in Spinal Fusion --- p.89 / Chapter 4.4.4. --- bFGF Masked the Effect of OS in MSC --- p.91 / Chapter 4.4.5. --- LIPUS Enhanced Bone Formation --- p.95 / Chapter 4.4.6. --- LIPUS Enhanced Bone Formation through Mineralization --- p.96 / Chapter 4.4.7. --- LIPUS Enhanced Spinal Fusion through Bone Remodeling-induced Fusion Mass --- p.97 / Chapter 4.4.8. --- LIPUS Enhanced Bone Formation through Endochondral Ossification --- p.99 / Chapter Chapter 5 --- In Vivo Monitoring of Spinal Fusion in Animal Model with High-resolution Peripheral Quantitative Computed Tomography-A New Pilot Study --- p.122 / Chapter 5.1. --- Introduction --- p.123 / Chapter 5.2. --- Materials and Methods --- p.124 / Chapter 5.2.1. --- Animal Groupings --- p.124 / Chapter 5.2.2. --- Preparation of MSC Derived Osteogenic Cells-tricalcium Phosphate Ceramics Composite --- p.124 / Chapter 5.2.3. --- Posterior Spinal Fusion Operation Procedures --- p.125 / Chapter 5.2.4. --- LIPUS treatment --- p.125 / Chapter 5.2.5. --- High-resolution Peripheral Quantitative Computed Tomography …- --- p.125 / Chapter 5.2.6. --- Analysis with HR-pQCT --- p.126 / Chapter 5.3. --- Result --- p.128 / Chapter 5.3.1. --- Qualitative Observations from HR-pQCT Images --- p.128 / Chapter 5.3.2. --- Quantitative Analysis --- p.129 / Chapter 5.4. --- Discussion --- p.130 / Chapter Chapter 6 --- "Overall Summary, Discussion and Conclusion" --- p.140 / Chapter 6.1. --- Overall Summary and Discussion --- p.141 / Chapter 6.2. --- Limitations and Further Studies --- p.145 / Chapter 6.3. --- Conclusions --- p.147 / Chapter 6.4. --- Summary Flowchart of the whole thesis --- p.148 / References --- p.153
4

Nuevas contribuciones en aplicaciones de fusión multimodal de bioseñales

Pereira González, Luis Manuel 26 December 2024 (has links)
[ES] Esta tesis aborda el problema de fusión de datos en el ámbito de la neurociencia. El objetivo principal de este estudio es la fusión de modalidades, con énfasis en la fusión bimodal de señales biomédicas fMRI+EEG y de ECG+EEG. Las técnicas de fusión de datos tienen como objetivo alcanzar la exactitud y precisión en la toma de decisiones que sería más difícil con una sola modalidad. Hemos hecho una extensa revisión bibliográfica que contempla la fusión temprana y la fusión tardía de la siguiente manera: fusión temprana a nivel de sensores; fusión temprana a nivel de características; fusión tardía a nivel de scores; y fusión tardía a nivel de decisiones. En cada uno de esos apartados se presenta una tabla comparativa con las debilidades y fortalezas de cada método, así como los trabajos más citados. También hemos hecho aportes teóricos en esta área abordando el tema de la comparación entre la fusión temprana y la fusión tardía (soft y hard) para un problema multimodal de dos clases, dando elementos sobre la opción más adecuada a la hora de seleccionar la fusión temprana o tardía. Para este análisis hemos asumido inicialmente el conocimiento de los modelos utilizados., para después considerar modelos donde hay que estimar una serie de parámetros a partir de un conjunto de entrenamiento. El análisis se ha hecho para datos incorrelados y se ha extendido a datos con matrices de covarianza arbitrarias. Hemos realizado un estudio experimental como complemento del capítulo teórico. A partir de cuatro experimentos diferentes se destaca la efectividad de la fusión de datos multimodales para la mejora del rendimiento de los clasificadores. Los métodos de fusión y los clasificadores probados mostraron consistentemente un rendimiento superior en términos de métricas como el F1 score, la precisión, AUC y APR, en comparación con el uso de una sola modalidad de datos. Los resultados logrados subrayan la importancia de la fusión de datos en aplicaciones neurocientíficas y abren nuevas posibilidades para el desarrollo de sistemas de diagnóstico más precisos y robustos. / [CA] Aquesta tesi aborda el problema de la fusió de dades en l'àmbit de la neurociència. L'objectiu principal d'aquest estudi és la fusió de modalitats, amb èmfasi en la fusió bimodal de senyals biomèdiques fMRI+EEG i d'ECG+EEG. Les tècniques de fusió de dades tenen com a objectiu assolir l'exactitud i precisió en la presa de decisions que seria més difícil amb una sola modalitat. Hem fet una extensa revisió bibliogràfica que contempla la fusió primerenca i la fusió tardana de la següent manera: fusió primerenca a nivell de sensors; fusió primerenca a nivell de característiques; fusió tardana a nivell de puntuacions; i fusió tardana a nivell de decisions. En cadascun d'aquests apartats es presenta una taula comparativa amb les debilitats i fortaleses de cada mètode, així com els treballs més citats. També hem fet aportacions teòriques en aquesta àrea abordant el tema de la comparació entre la fusió primerenca i la fusió tardana (suau i dura) per a un problema multimodal de dues classes, donant elements sobre l'opció més adequada a l'hora de seleccionar la fusió primerenca o tardana. Per a aquesta anàlisi, hem assumit inicialment el coneixement dels models utilitzats, per després considerar models on cal estimar una sèrie de paràmetres a partir d'un conjunt d'entrenament. L'anàlisi s'ha fet per a dades incorrelades i s'ha estès a dades amb matrius de covariància arbitràries. Hem realitzat un estudi experimental com a complement del capítol teòric. A partir de quatre experiments diferents es destaca l'efectivitat de la fusió de dades multimodals per a la millora del rendiment dels classificadors. Els mètodes de fusió i els classificadors provats van mostrar constantment un rendiment superior en termes de mètriques com el F1 score, la precisió, AUC i APR, en comparació amb l'ús d'una sola modalitat de dades. Els resultats obtinguts subratllen la importància de la fusió de dades en aplicacions neurocientífiques i obrin noves possibilitats per al desenvolupament de sistemes de diagnòstic més precisos i robusts. / [EN] This thesis addresses the problem of data fusion in the field of neuroscience. The main objective of this study is to explore multimodal fusion, with an emphasis on bimodal fusion of biomedical signals such as fMRI+EEG and ECG+EEG. Data fusion techniques aim to achieve accuracy and precision in decision-making that would be more challenging with a single modality. We have conducted an extensive literature review covering early fusion and late fusion, as follows: early fusion at the sensor level, early fusion at the feature level, late fusion at the score level, and late fusion at the decision level. In each of these sections, we present a comparative table outlining the strengths and weaknesses of each method, as well as the most cited works. We have also made theoretical contributions to this area by addressing the comparison between early and late fusion (both soft and hard) for a two-class multimodal problem, providing insights into the most suitable choice between early and late fusion. For this analysis, we initially assumed knowledge of the models used, then considered scenarios where a series of parameters must be estimated from a training set. The analysis was conducted for uncorrelated data and extended to data with arbitrary covariance matrices. We conducted an experimental study to complement the theoretical chapter. Based on four different experiments, the effectiveness of multimodal data fusion in enhancing classifier performance was highlighted. The tested fusion methods and classifiers consistently demonstrated superior performance in terms of metrics such as F1 score, precision, AUC, and APR compared to using a single data modality. The results emphasize the importance of data fusion in neuroscientific applications and open up new possibilities for developing more accurate and robust diagnostic systems. / Pereira González, LM. (2024). Nuevas contribuciones en aplicaciones de fusión multimodal de bioseñales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213614
5

Generische Verkettung maschineller Ansätze der Bilderkennung durch Wissenstransfer in verteilten Systemen: Am Beispiel der Aufgabengebiete INS und ACTEv der Evaluationskampagne TRECVid

Roschke, Christian 08 November 2021 (has links)
Der technologische Fortschritt im Bereich multimedialer Sensorik und zugehörigen Methoden zur Datenaufzeichnung, Datenhaltung und -verarbeitung führt im Big Data-Umfeld zu immensen Datenbeständen in Mediatheken und Wissensmanagementsystemen. Zugrundliegende State of the Art-Verarbeitungsalgorithmen werden oftmals problemorientiert entwickelt. Aufgrund der enormen Datenmengen lassen sich nur bedingt zuverlässig Rückschlüsse auf Güte und Anwendbarkeit ziehen. So gestaltet sich auch die intellektuelle Erschließung von großen Korpora schwierig, da die Datenmenge für valide Aussagen nahezu vollumfänglich semi-intellektuell zu prüfen wäre, was spezifisches Fachwissen aus der zugrundeliegenden Datendomäne ebenso voraussetzt wie zugehöriges Verständnis für Datenhandling und Klassifikationsprozesse. Ferner gehen damit gesonderte Anforderungen an Hard- und Software einher, welche in der Regel suboptimal skalieren, da diese zumeist auf Multi-Kern-Rechnern entwickelt und ausgeführt werden, ohne dabei eine notwendige Verteilung vorzusehen. Folglich fehlen Mechanismen, um die Übertragbarkeit der Verfahren auf andere Anwendungsdomänen zu gewährleisten. Die vorliegende Arbeit nimmt sich diesen Herausforderungen an und fokussiert auf die Konzeptionierung und Entwicklung einer verteilten holistischen Infrastruktur, die die automatisierte Verarbeitung multimedialer Daten im Sinne der Merkmalsextraktion, Datenfusion und Metadatensuche innerhalb eines homogenen Systems ermöglicht. Der Fokus der vorliegenden Arbeit liegt in der Konzeptionierung und Entwicklung einer verteilten holistischen Infrastruktur, die die automatisierte Verarbeitung multimedialer Daten im Sinne der Merkmalsextraktion, Datenfusion und Metadatensuche innerhalb eines homogenen aber zugleich verteilten Systems ermöglicht. Dabei sind Ansätze aus den Domänen des Maschinellen Lernens, der Verteilten Systeme, des Datenmanagements und der Virtualisierung zielführend miteinander zu verknüpfen, um auf große Datenmengen angewendet, evaluiert und optimiert werden zu können. Diesbezüglich sind insbesondere aktuelle Technologien und Frameworks zur Detektion von Mustern zu analysieren und einer Leistungsbewertung zu unterziehen, so dass ein Kriterienkatalog ableitbar ist. Die so ermittelten Kriterien bilden die Grundlage für eine Anforderungsanalyse und die Konzeptionierung der notwendigen Infrastruktur. Diese Architektur bildet die Grundlage für Experimente im Big Data-Umfeld in kontextspezifischen Anwendungsfällen aus wissenschaftlichen Evaluationskampagnen, wie beispielsweise TRECVid. Hierzu wird die generische Applizierbarkeit in den beiden Aufgabenfeldern Instance Search und Activity in Extended Videos eruiert.:Abbildungsverzeichnis Tabellenverzeichnis 1 Motivation 2 Methoden und Strategien 3 Systemarchitektur 4 Instance Search 5 Activities in Extended Video 6 Zusammenfassung und Ausblick Anhang Literaturverzeichnis / Technological advances in the field of multimedia sensing and related methods for data acquisition, storage, and processing are leading to immense amounts of data in media libraries and knowledge management systems in the Big Data environment. The underlying modern processing algorithms are often developed in a problem-oriented manner. Due to the enormous amounts of data, reliable statements about quality and applicability can only be made to a limited extent. Thus, the intellectual exploitation of large corpora is also difficult, as the data volume would have to be analyzed for valid statements, which requires specific expertise from the underlying data domain as well as a corresponding understanding of data handling and classification processes. In addition, there are separate requirements for hardware and software, which usually scale in a suboptimal manner while being developed and executed on multicore computers without provision for the required distribution. Consequently, there is a lack of mechanisms to ensure the transferability of the methods to other application domains. The focus of this work is the design and development of a distributed holistic infrastructure that enables the automated processing of multimedia data in terms of feature extraction, data fusion, and metadata search within a homogeneous and simultaneously distributed system. In this context, approaches from the areas of machine learning, distributed systems, data management, and virtualization are combined in order to be applicable on to large data sets followed by evaluation and optimization procedures. In particular, current technologies and frameworks for pattern recognition are to be analyzed and subjected to a performance evaluation so that a catalog of criteria can be derived. The criteria identified in this way form the basis for a requirements analysis and the conceptual design of the infrastructure required. This architecture builds the base for experiments in the Big Data environment in context-specific use cases from scientific evaluation campaigns, such as TRECVid. For this purpose, the generic applicability in the two task areas Instance Search and Activity in Extended Videos is elicited.:Abbildungsverzeichnis Tabellenverzeichnis 1 Motivation 2 Methoden und Strategien 3 Systemarchitektur 4 Instance Search 5 Activities in Extended Video 6 Zusammenfassung und Ausblick Anhang Literaturverzeichnis

Page generated in 0.0716 seconds