• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 21
  • 21
  • 13
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A fuzzy method for expression classification of faces

Case, Simon James January 2000 (has links)
No description available.
2

Generating Fuzzy Rules For Case-based Classification

Ma, Liangjun, Zhang, Shouchuan January 2012 (has links)
As a technique to solve new problems based on previous successful cases, CBR represents significant prospects for improving the accuracy and effectiveness of unstructured decision-making problems. Similar problems have similar solutions is the main assumption. Utility oriented similarity modeling is gradually becoming an important direction for Case-based reasoning research. In this thesis, we propose a new way to represent the utility of case by using fuzzy rules. Our method could be considered as a new way to estimate case utility based on fuzzy rule based reasoning. We use modified WANG’s algorithm to generate a fuzzy if-then rule from a case pair instead of a single case. The fuzzy if-then rules have been identified as a powerful means to capture domain information for case utility approximation than traditional similarity measures based on feature weighting. The reason why we choose the WANG algorithm as the foundation is that it is a simpler and faster algorithm to generate if-then rules from examples. The generated fuzzy rules are utilized as a case matching mechanism to estimate the utility of the cases for a given problem. The given problem will be formed with each case in the case library into pairs which are treated as the inputs of fuzzy rules to determine whether or to which extent a known case is useful to the problem. One case has an estimated utility score to the given problem to help our system to make decision. The experiments on several data sets have showed the superiority of our method over traditional schemes, as well as the feasibility of learning fuzzy if-then rules from a small number of cases while still having good performances.
3

GA-based learning algorithms to identify fuzzy rules for fuzzy neural networks

Aimejalii, K., Dahal, Keshav P., Hossain, M. Alamgir January 2007 (has links)
Yes / Identification of fuzzy rules is an important issue in designing of a fuzzy neural network (FNN). However, there is no systematic design procedure at present. In this paper we present a genetic algorithm (GA) based learning algorithm to make use of the known membership function to identify the fuzzy rules form a large set of all possible rules. The proposed learning algorithm initially considers all possible rules then uses the training data and the fitness function to perform ruleselection. The proposed GA based learning algorithm has been tested with two different sets of training data. The results obtained from the experiments are promising and demonstrate that the proposed GA based learning algorithm can provide a reliable mechanism for fuzzy rule selection.
4

[en] ADAPTIVE HEURISTIC CONTROLLERS / [pt] CONTROLADORES HEURÍSTICOS ADAPTATIVOS

RICARDO GUTIERRES 27 December 2006 (has links)
[pt] Um controlador Heurístico Adaptativo baseia-se num conjunto de regras lingüísticas para conduzir um processo com modelo impreciso ou complexo ao estado desejado. O comportamento do processo deve respeitar os requisitos de performance predefinidos. Para satisfazer estes objetivos, a estrutura interna do controle sofre mudanças para adequá- la as condições vigentes no processo. Os métodos de adaptação abordados consideram a modificação de uma estrutura matricial interpretada como as correções incrementais, compatíveis com os ajustes a serem efetuados sobre o processo, ou como regras, constituídas por variáveis nebulosas, que requerem manipulações adicionais para produzir a saída do controlador. Em qualquer dos casos, a adaptação é realizada a partir de uma Tabela de Índices de Performance. Para facilitar a sua obtenção é implementado um procedimento, que fornece a representação matricial das regras lingüísticas, concatenadas na forma de um Algoritmo Lingüístico de Controle. O comportamento dinâmico do Sistema, composto pelos Controladores Heurísticos e por processos com modelos distintos, é considerado para Tabelas de índices de Performance com várias dimensões. As regras lingüísticas, correlacionadas com estas tabelas, foram elaboradas com diversas classes de atributos. As simulações realizadas concentram-se sobre os parâmetros dos controladores, que influenciam significativa- Os estudos abordam também o comportamento da estrutura interna destes controladores e o seu desempenho em termos da velocidade de atuação sobre o processo. / [en] A heuristic Controller uses a set of linguistic rules, which are derived from expertise or human operators´ skills, in order to achieve control of processes that have inaccurate or complex models. An adaptative Heuristic Controller adjusts the set of rules in an automatic and continuous way, aiming to achieve prescribed objectives indicated by a performance measure. The adaptative procedures modify a matrix, the elements of which are either incremental corrections or numeric rules associated with fuzzy variables. In both cases a Performance Index Table and a learning method are employed to correct that matrix. The Performance Table is a matrix calculated from a set of linguistic rules. The controllers are implemented with different Performance Tables, considering various sets of linguistic values and quantization levels. The dynamic behaviour of overdamped and underdamped processes is investigated. The performance of simulated systems is analyzed with respect to relevant parameters that affect their behaviour.
5

Intelligent condition monitoring using fuzzy inductive learning

Peng, Yonghong January 2004 (has links)
No / Extensive research has been performed for developing knowledge based intelligent monitoring systems for improving the reliability of manufacturing processes. Due to the high expense of obtaining knowledge from human experts, it is expected to develop new techniques to obtain the knowledge automatically from the collected data using data mining techniques. Inductive learning has become one of the widely used data mining methods for generating decision rules from data. In order to deal with the noise or uncertainties existing in the data collected in industrial processes and systems, this paper presents a new method using fuzzy logic techniques to improve the performance of the classical inductive learning approach. The proposed approach, in contrast to classical inductive learning method using hard cut point to discretize the continuous-valued attributes, uses soft discretization to enable the systems have less sensitivity to the uncertainties and noise. The effectiveness of the proposed approach has been illustrated in an application of monitoring the machining conditions in uncertain environment. Experimental results show that this new fuzzy inductive learning method gives improved accuracy compared with using classical inductive learning techniques.
6

Symptoms-Based Fuzzy-Logic Approach for COVID-19 Diagnosis

Shatnawi, Maad, Shatnawi, Anas, AlShara, Zakarea, Husari, Ghaith 01 January 2021 (has links)
The coronavirus (COVID-19) pandemic has caused severe adverse effects on the human life and the global economy affecting all communities and individuals due to its rapid spreading, increase in the number of affected cases and creating severe health issues and death cases worldwide. Since no particular treatment has been acknowledged so far for this disease, prompt detection of COVID-19 is essential to control and halt its chain. In this paper, we introduce an intelligent fuzzy inference system for the primary diagnosis of COVID-19. The system infers the likelihood level of COVID-19 infection based on the symptoms that appear on the patient. This proposed inference system can assist physicians in identifying the disease and help individuals to perform self-diagnosis on their own cases.
7

Maximization of Delivery-Based Customer Satisfaction Considering Customer-Job Relationships in a Multi-Period Environment

Arinsoy, Aslican January 2013 (has links)
No description available.
8

[en] HIERARCHICAL NEURO-FUZZY BSP-MAMDANI MODEL / [pt] MODELO NEURO-FUZZY HIERÁRQUICOS BSP MAMDANI

ROSINI ANTONIO MONTEIRO BEZERRA 04 November 2002 (has links)
[pt] Esta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para aplicações em classificação de padrões, previsão, sistemas de controle e extração de regras fuzzy. O objetivo é criar um modelo Neuro-Fuzzy Hierárquico BSP do tipo Mamdani a partir do modelo Neuro-Fuzzy Hierárquico BSP Class (NFHB-Class) que é capaz de criar a sua própria estrutura automaticamente e extrair conhecimento de uma base de dados através de regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. Esta dissertação consiste de quatros etapas principais: estudo dos principais sistemas hierárquicos; análise do sistema Neuro-Fuzzy Hierárquico BSP Class, definição e implementação do modelo NFHB-Mamdani e estudo de casos. No estudo dos principais sistemas hierárquicos é efetuado um levantamento bibliográfico na área. São investigados, também, os principais modelos neuro-fuzzy utilizados em sistemas de controle - Falcon e o Nefcon. Na análise do sistema NFHB- Class, é verificado o aprendizado da estrutura, o particionamento recursivo, a possibilidade de se ter um maior número de entrada - em comparação com outros sistemas neuro-fuzzy - e regras fuzzy recursivas. O sistema NFHB- Class é um modelo desenvolvido especificamente para classificação de padrões, como possui várias saídas, não é possível utilizá-lo em aplicações em controle e em previsão. Para suprir esta deficiência, é criado um novo modelo que contém uma única saída. Na terceira etapa é definido um novo modelo Neuro-Fuzzy Hierárquico BSP com conseqüentes fuzzy (NFHB-Mamdani), cuja implementação utiliza a arquitetura do NFHBClass para a fase do aprendizado, teste e validação, porém, com os conseqüentes diferentes, modificando a estratégia de definição dos conseqüentes das regras. Além de sua utilização em classificação de padrões, previsão e controle, o sistema NFHB-Mamdani é capaz de extrair conhecimento de uma base de dados em forma de regras do tipo SE ENTÃO. No estudo de casos são utilizadas duas bases de dados típicas para aplicações em classificação: Wine e o Iris. Para previsão são utilizadas séries de cargas elétricas de seis companhias brasileiras diferentes: Copel, Cemig, Light, Cerj, Eletropaulo e Furnas. Finalmente, para testar o desempenho do sistema em controle faz-se uso de uma planta de terceira ordem como processo a controlar. Os resultados obtidos para classificação, na maioria dos casos, são superiores aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados. Para previsão de cargas elétricas, os resultados obtidos estão sempre entre os melhores resultados fornecidos por outros modelos aos quais formam comparados. Quanto à aplicação em controle, o modelo NFHB-Mamdani consegue controlar, de forma satisfatória, o processo utilizado para teste. / [en] This paper investigates the use of Binary Space Partitioning (BSP) Hierarchical Neuro-Fuzzy Systems for applications in pattern classification, forecast, control systems and obtaining of fuzzy rules. The goal is to create a BSP Hierarchical Neuro-Fuzzy Model of the Mamdani type from the BSP Hierarchical Neuro-Fuzzy Class (NFHB-Class) which is able to create its own structure automatically and obtain knowledge from a data base through fuzzy rule, interpreted linguistically, that explain the data structure. This paper is made up of four main parts: study of the main Hierarchical Systems; analysis of the BSP Hierarchical Neuro-Fuzzy Class System, definition and implementation of the NFHB-Mamdani model, and case studies. A bibliographical survey is made in the study of the main Hierarchical Systems. The main Neuro-Fuzzy Models used in control systems - Falcon and Nefcon -are also investigated. In the NFHB-Class System, the learning of the structure is verified, as well as, the recursive partitioning, the possibility of having a greater number of inputs in comparison to other Neuro-Fuzzy systems and recursive fuzzy rules. The NFHB-Class System is a model developed specifically for pattern classification, since it has various outputs, it is not possible to use it in control application and forecast. To make up for this deficiency, a new unique output model is developed. In the third part, a new BSP Hierarchical Neuro-Fuzzy model is defined with fuzzy consequents (NFHB-Mamdani), whose implementation uses the NFHB-Class architecture for the learning, test, and validation phase, yet with the different consequents, modifying the definition strategy of the consequents of the rules. Aside from its use in pattern classification, forecast, and control, the NFHB-Mamdani system is capable of obtaining knowledge from a data base in the form of rules of the type IF THEN. Two typical data base for application in classification are used in the case studies: Wine and Iris. Electric charge series of six different Brazilian companies are used for forecasting: Copel, Cemig, Light, Cerj, Eletropaulo and Furnas. Finally, to test the performance of the system in control, a third order plant is used as a process to be controlled. The obtained results for classification, in most cases, are better than the best results found by other models and algorithms to which they were compared. For forecast of electric charges, the obtained results are always among the best supplied by other models to which they were compared. Concerning its application in control, the NFHB-Mamdani model is able to control, reasonably, the process used for test.
9

[en] FUZZY MODELS IN SEGMENTATION AND ANALYSIS OF BANK MARKETING / [pt] MODELOS FUZZY NA SEGMENTAÇÃO E ANÁLISE DO MERCADO BANCÁRIO

MAXIMILIANO MORENO LIMA 03 October 2008 (has links)
[pt] Este trabalho tem como principal objetivo propor e desenvolver uma metodologia baseada em modelos fuzzy para a segmentação e caracterização dos segmentos que compõem o mercado bancário, permitindo um amplo conhecimento dos perfis de clientes, melhor adaptação das ofertas ao mercado e, conseqüentemente, melhores retornos financeiros. A metodologia proposta nesta dissertação pode ser dividida em três módulos principais: coleta e tratamento dos dados; definição dos segmentos; e caracterização e classificação dos segmentos. O primeiro módulo, denominado coleta e tratamento dos dados, abrange as pesquisas de marketing utilizadas na coleta dos dados e a aplicação de técnicas de pré-processamento de dados, para a limpeza (remoção de outliers e missing values) e normalização dos dados. O módulo de definição dos segmentos emprega o modelo fuzzy de agrupamento Fuzzy C-Means (FCM) na descoberta de grupos de clientes que apresentem características semelhantes. A escolha deste modelo de agrupamento deve-se à possibilidade de análise dos graus de pertinência de cada cliente em relação aos diferentes grupos, identificando os clientes entre segmentos e, conseqüentemente, elaborando ações efetivas para a sua transição ou manutenção nos segmentos de interesse. O módulo de caracterização e classificação dos segmentos é baseado em um Sistema de Inferência Fuzzy. Na primeira etapa deste módulo são selecionadas as variáveis mais relevantes, do ponto de vista da informação, para sua aplicação no processo de extração de regras. As regras extraídas para a caracterização dos segmentos são posteriormente utilizadas na construção de um sistema de inferência fuzzy dedicado à classificação de novos clientes. Este sistema permite que os analistas de marketing contribuam com novas regras ou modifiquem as já extraídas, tornando o modelo mais robusto e a segmentação de mercado uma ferramenta acessível a todos que dela se servem. A metodologia foi aplicada na segmentação de mercado do Banco da Amazônia, um banco estatal que atua na Amazônia Legal, cujo foco prioritário constitui o fomento da região. Avaliando a aplicação dos modelos fuzzy no estudo de caso, observam-se bons resultados na definição dos segmentos, com médias de valor de silhueta de 0,7, e na classificação da base de clientes, com acurácia de 100%. Adicionalmente, o uso destes modelos na segmentação de mercado possibilitou a análise dos clientes que estão entre segmentos e a caracterização desses segmentos por meio de uma base de regras, ampliando as análises dos analistas de marketing. / [en] The main aim of this work is to propose and develop a methodology base don fuzzy models for segmentation and characterization of segments comprising the bank segment, allowing broad knowledge of client profiles, better suiting market needs, hence offering better financial results. The methodology proposed in this work may be divided into three main modules: data collection and treatment; definition of segments; and characterization and classification of segments. The first module, denominated data collection and treatment, encompasses marketing research used in data collection and application of techniques for pre-processing of data, for data trimming (removal of outliers and missing values) and normalization. The definition of segments adopts the Fuzzy C-Means (FCM) grouping model in identifying groups of clients with similar characteristics. The choice for this grouping model is due to the possibility of analyzing the membership coefficient of each client in connection with the different groups, thus identifying clients among segments and consequently elaborating effective actions for their transition to or maintenance in the segments of interest. The module of characterization and classification of segments is based on a Fuzzy Inference System. In the first stage, the most relevant variables from the information standpoint are selected, for application in the process of rule extraction. The rules extracted are then used in the construction of a fuzzy inference system dedicated to classifying new clients. This system allows marketing analysts to contribute with new rules or modify those already extracted, making the model more robust and the turning market segmentation into a tool accessible to all using it. This methodology was applied in the market segmentation of Banco da Amazônia, stte- contrlled bank acting in the Amazon region, with main focus of which is fostering the region´s development. The application of fuzzy models in the case study generated good results in the definition of segments, with average silhouette value of 0.7, and accuracy of 100% for client base classification. Furthermore, the use of these models in market segmentation allowed the analysis of clients classified between segments and the characterization of those segments by means of a set of rules, improving the analyses made by marketing analysts.
10

[en] TRAFFIC CONTROL THROUGH FUZZY LOGIC AND NEURAL NETWORKS / [pt] CONTROLE DE SEMÁFOROS POR LÓGICA FUZZY E REDES NEURAIS

ALEXANDRE ROBERTO RENTERIA 17 June 2002 (has links)
[pt] Este trabalho apresenta a utilização de lógica fuzzy e de redes neurais no desenvolvimento de um controlador de semáforos - o FUNNCON. O trabalho realizado consiste em quatro etapas principais: estudo dos fundamentos de engenharia de tráfego; definição de uma metodologia para a avaliação de cruzamentos sinalizados; definição do modelo do controlador proposto; e implementação com dados reais em um estudo de caso.O estudo sobre os fundamentos de engenharia de tráfego aborda a definição de termos,os parâmetros utilizados na descrição dos fluxos de tráfego, os tipos de cruzamentos e seus semáforos, os sistemas de controle de tráfego mais utilizados e as diversas medidas de desempenho.Para se efetuar a análise dos resultados do FUNNCON, é definida uma metodologia para a avaliação de controladores. Apresenta-se, também, uma investigação sobre simuladores de tráfego existentes, de modo a permitir a escolha do mais adequado para o presente estudo. A definição do modelo do FUNNCON compreende uma descrição geral dos diversos módulos que o compõem. Em seguida, cada um destes módulos é estudado separadamente: o uso de redes neurais para a predição de tráfego futuro; a elaboração de um banco de cenários ótimos através de um otimizador; e a criação de regras fuzzy a partir deste banco.No estudo de caso, o FUNNCON é implementado com dados reais fornecidos pela CET-Rio em um cruzamento do Rio de Janeiro e comparado com o controlador existente.É constatado que redes neurais são capazes de fornecer bons resultados na predição do tráfego futuro. Também pode ser observado que as regras fuzzy criadas a partir do banco de cenários ótimos proporcionam um controle efetivo do tráfego no cruzamento estudado. Uma comparação entre o desempenho do FUNNCON e o do sistema atualmente em operação é amplamente favorável ao primeiro. / [en] This work presents the use of fuzzy logic and neural networks in the development of a traffic signal controller - FUNNCON. The work consists of four main sections: study of traffic engineering fundamentals; definition of a methodology for evaluation of traffic controls; definition of the proposed controller model; and implementation on a case study using real data.The study of traffic engineering fundamentals considers definitions of terms,parameters used for traffic flow description, types of intersections and their traffic signals,commonly used traffic control systems and performance measures.In order to analyse the results provided by FUNNCON, a methodology for the evaluation of controllers is defined. The existing traffic simulators are investigated, in order to select the best one for the present study.The definition of the FUNNCON model includes a brief description of its modules.Thereafter each module is studied separately: the use of neural networks for future traffic prediction; the setup of a best scenario database using an optimizer; and the extraction of fuzzy rules from this database.In the case study, FUNNCON is implemented with real data supplied by CET-Rio from an intersection in Rio de Janeiro; its performance is compared with that of the existing controller.It can be observed that neural networks can present good results in the prediction of future traffic and that the fuzzy rules created from the best scenario database lead to an effective traffic control at the considered intersection. When compared with the system in operation, FUNNCON reveals itself much superior.

Page generated in 0.0391 seconds