1 |
A fuzzy method for expression classification of facesCase, Simon James January 2000 (has links)
No description available.
|
2 |
Generating Fuzzy Rules For Case-based ClassificationMa, Liangjun, Zhang, Shouchuan January 2012 (has links)
As a technique to solve new problems based on previous successful cases, CBR represents significant prospects for improving the accuracy and effectiveness of unstructured decision-making problems. Similar problems have similar solutions is the main assumption. Utility oriented similarity modeling is gradually becoming an important direction for Case-based reasoning research. In this thesis, we propose a new way to represent the utility of case by using fuzzy rules. Our method could be considered as a new way to estimate case utility based on fuzzy rule based reasoning. We use modified WANG’s algorithm to generate a fuzzy if-then rule from a case pair instead of a single case. The fuzzy if-then rules have been identified as a powerful means to capture domain information for case utility approximation than traditional similarity measures based on feature weighting. The reason why we choose the WANG algorithm as the foundation is that it is a simpler and faster algorithm to generate if-then rules from examples. The generated fuzzy rules are utilized as a case matching mechanism to estimate the utility of the cases for a given problem. The given problem will be formed with each case in the case library into pairs which are treated as the inputs of fuzzy rules to determine whether or to which extent a known case is useful to the problem. One case has an estimated utility score to the given problem to help our system to make decision. The experiments on several data sets have showed the superiority of our method over traditional schemes, as well as the feasibility of learning fuzzy if-then rules from a small number of cases while still having good performances.
|
3 |
GA-based learning algorithms to identify fuzzy rules for fuzzy neural networksAimejalii, K., Dahal, Keshav P., Hossain, M. Alamgir January 2007 (has links)
Yes / Identification of fuzzy rules is an important issue in
designing of a fuzzy neural network (FNN). However,
there is no systematic design procedure at present. In
this paper we present a genetic algorithm (GA) based
learning algorithm to make use of the known membership
function to identify the fuzzy rules form a large set
of all possible rules. The proposed learning algorithm
initially considers all possible rules then uses the
training data and the fitness function to perform ruleselection.
The proposed GA based learning algorithm
has been tested with two different sets of training data.
The results obtained from the experiments are promising
and demonstrate that the proposed GA based
learning algorithm can provide a reliable mechanism
for fuzzy rule selection.
|
4 |
[en] ADAPTIVE HEURISTIC CONTROLLERS / [pt] CONTROLADORES HEURÍSTICOS ADAPTATIVOSRICARDO GUTIERRES 27 December 2006 (has links)
[pt] Um controlador Heurístico Adaptativo baseia-se num
conjunto de regras lingüísticas para conduzir um processo
com modelo impreciso ou complexo ao estado desejado. O
comportamento do processo deve respeitar os requisitos de
performance predefinidos. Para satisfazer estes objetivos,
a estrutura interna do controle sofre mudanças para adequá-
la as condições vigentes no processo.
Os métodos de adaptação abordados consideram a modificação
de uma estrutura matricial interpretada como as correções
incrementais, compatíveis com os ajustes a serem efetuados
sobre o processo, ou como regras, constituídas por
variáveis nebulosas, que requerem manipulações adicionais
para produzir a saída do controlador. Em qualquer dos
casos, a adaptação é realizada a partir de uma Tabela de
Índices de Performance. Para facilitar a sua obtenção é
implementado um procedimento, que fornece a representação
matricial das regras lingüísticas, concatenadas na forma
de um Algoritmo Lingüístico de Controle.
O comportamento dinâmico do Sistema, composto pelos
Controladores Heurísticos e por processos com modelos
distintos, é considerado para Tabelas de índices de
Performance com várias dimensões. As regras lingüísticas,
correlacionadas com estas tabelas, foram elaboradas com
diversas classes de atributos.
As simulações realizadas concentram-se sobre os parâmetros
dos controladores, que influenciam significativa-
Os estudos abordam também o comportamento da estrutura
interna destes controladores e o seu desempenho em termos
da velocidade de atuação sobre o processo. / [en] A heuristic Controller uses a set of linguistic rules,
which are derived from expertise or human operators´
skills, in order to achieve control of processes that have
inaccurate or complex models.
An adaptative Heuristic Controller adjusts the set of
rules in an automatic and continuous way, aiming to
achieve prescribed objectives indicated by a performance
measure.
The adaptative procedures modify a matrix, the elements of
which are either incremental corrections or numeric rules
associated with fuzzy variables. In both cases a
Performance Index Table and a learning method are employed
to correct that matrix. The Performance Table is a matrix
calculated from a set of linguistic rules.
The controllers are implemented with different Performance
Tables, considering various sets of linguistic values and
quantization levels.
The dynamic behaviour of overdamped and underdamped
processes is investigated. The performance of simulated
systems is analyzed with respect to relevant parameters
that affect their behaviour.
|
5 |
Intelligent condition monitoring using fuzzy inductive learningPeng, Yonghong January 2004 (has links)
No / Extensive research has been performed for developing knowledge based intelligent monitoring systems for improving the reliability of manufacturing processes. Due to the high expense of obtaining knowledge from human experts, it is expected to develop new techniques to obtain the knowledge automatically from the collected data using data mining techniques. Inductive learning has become one of the widely used data mining methods for generating decision rules from data. In order to deal with the noise or uncertainties existing in the data collected in industrial processes and systems, this paper presents a new method using fuzzy logic techniques to improve the performance of the classical inductive learning approach. The proposed approach, in contrast to classical inductive learning method using hard cut point to discretize the continuous-valued attributes, uses soft discretization to enable the systems have less sensitivity to the uncertainties and noise. The effectiveness of the proposed approach has been illustrated in an application of monitoring the machining conditions in uncertain environment. Experimental results show that this new fuzzy inductive learning method gives improved accuracy compared with using classical inductive learning techniques.
|
6 |
Symptoms-Based Fuzzy-Logic Approach for COVID-19 DiagnosisShatnawi, Maad, Shatnawi, Anas, AlShara, Zakarea, Husari, Ghaith 01 January 2021 (has links)
The coronavirus (COVID-19) pandemic has caused severe adverse effects on the human life and the global economy affecting all communities and individuals due to its rapid spreading, increase in the number of affected cases and creating severe health issues and death cases worldwide. Since no particular treatment has been acknowledged so far for this disease, prompt detection of COVID-19 is essential to control and halt its chain. In this paper, we introduce an intelligent fuzzy inference system for the primary diagnosis of COVID-19. The system infers the likelihood level of COVID-19 infection based on the symptoms that appear on the patient. This proposed inference system can assist physicians in identifying the disease and help individuals to perform self-diagnosis on their own cases.
|
7 |
Maximization of Delivery-Based Customer Satisfaction Considering Customer-Job Relationships in a Multi-Period EnvironmentArinsoy, Aslican January 2013 (has links)
No description available.
|
8 |
[en] HIERARCHICAL NEURO-FUZZY BSP-MAMDANI MODEL / [pt] MODELO NEURO-FUZZY HIERÁRQUICOS BSP MAMDANIROSINI ANTONIO MONTEIRO BEZERRA 04 November 2002 (has links)
[pt] Esta dissertação investiga a utilização de sistemas Neuro-
Fuzzy Hierárquicos BSP (Binary Space Partitioning) para
aplicações em classificação de padrões, previsão, sistemas
de controle e extração de regras fuzzy. O objetivo é criar
um modelo Neuro-Fuzzy Hierárquico BSP do tipo Mamdani a
partir do modelo Neuro-Fuzzy Hierárquico BSP Class
(NFHB-Class) que é capaz de criar a sua própria estrutura
automaticamente e extrair conhecimento de uma base de dados
através de regras fuzzy, lingüisticamente interpretáveis,
que explicam a estrutura dos dados. Esta dissertação
consiste de quatros etapas principais: estudo dos principais
sistemas hierárquicos; análise do sistema Neuro-Fuzzy
Hierárquico BSP Class, definição e implementação do modelo
NFHB-Mamdani e estudo de casos. No estudo dos principais
sistemas hierárquicos é efetuado um levantamento
bibliográfico na área. São investigados, também, os
principais modelos neuro-fuzzy utilizados em sistemas de
controle - Falcon e o Nefcon. Na análise do sistema NFHB-
Class, é verificado o aprendizado da estrutura, o
particionamento recursivo, a possibilidade de se ter um
maior número de entrada - em comparação com outros sistemas
neuro-fuzzy - e regras fuzzy recursivas. O sistema NFHB-
Class é um modelo desenvolvido especificamente para
classificação de padrões, como possui várias saídas, não é
possível utilizá-lo em aplicações em controle e em
previsão. Para suprir esta deficiência, é criado um novo
modelo que contém uma única saída. Na terceira etapa é
definido um novo modelo Neuro-Fuzzy Hierárquico BSP com
conseqüentes fuzzy (NFHB-Mamdani), cuja implementação
utiliza a arquitetura do NFHBClass para a fase do
aprendizado, teste e validação, porém, com os conseqüentes
diferentes, modificando a estratégia de definição dos
conseqüentes das regras. Além de sua utilização em
classificação de padrões, previsão e controle, o sistema
NFHB-Mamdani é capaz de extrair conhecimento de uma base de
dados em forma de regras do tipo SE ENTÃO. No estudo de
casos são utilizadas duas bases de dados típicas para
aplicações em classificação: Wine e o Iris. Para previsão
são utilizadas séries de cargas elétricas de seis
companhias brasileiras diferentes: Copel, Cemig, Light,
Cerj, Eletropaulo e Furnas. Finalmente, para testar o
desempenho do sistema em controle faz-se uso de uma planta
de terceira ordem como processo a controlar. Os resultados
obtidos para classificação, na maioria dos casos, são
superiores aos melhores resultados encontrados pelos outros
modelos e algoritmos aos quais foram comparados. Para
previsão de cargas elétricas, os resultados obtidos estão
sempre entre os melhores resultados fornecidos por outros
modelos aos quais formam comparados. Quanto à aplicação em
controle, o modelo NFHB-Mamdani consegue controlar, de forma
satisfatória, o processo utilizado para teste. / [en] This paper investigates the use of Binary Space
Partitioning (BSP) Hierarchical Neuro-Fuzzy Systems for
applications in pattern classification, forecast, control
systems and obtaining of fuzzy rules. The goal is to create
a BSP Hierarchical Neuro-Fuzzy Model of the Mamdani type
from the BSP Hierarchical Neuro-Fuzzy Class (NFHB-Class)
which is able to create its own structure automatically and
obtain knowledge from a data base through fuzzy rule,
interpreted linguistically, that explain the data structure.
This paper is made up of four main parts: study of the main
Hierarchical Systems; analysis of the BSP Hierarchical
Neuro-Fuzzy Class System, definition and implementation of
the NFHB-Mamdani model, and case studies. A bibliographical
survey is made in the study of the main Hierarchical
Systems. The main Neuro-Fuzzy Models used in control
systems - Falcon and Nefcon -are also investigated.
In the NFHB-Class System, the learning of the structure is
verified, as well as, the recursive partitioning, the
possibility of having a greater number of inputs in
comparison to other Neuro-Fuzzy systems and recursive fuzzy
rules. The NFHB-Class System is a model developed
specifically for pattern classification, since it has
various outputs, it is not possible to use it in control
application and forecast. To make up for this deficiency, a
new unique output model is developed. In the third part, a
new BSP Hierarchical Neuro-Fuzzy model is defined with
fuzzy consequents (NFHB-Mamdani), whose implementation uses
the NFHB-Class architecture for the learning, test, and
validation phase, yet with the different consequents,
modifying the definition strategy of the consequents of the
rules. Aside from its use in pattern classification,
forecast, and control, the NFHB-Mamdani system is capable of
obtaining knowledge from a data base in the form of rules
of the type IF THEN. Two typical data base for application
in classification are used in the case studies: Wine and
Iris. Electric charge series of six different Brazilian
companies are used for forecasting: Copel, Cemig, Light,
Cerj, Eletropaulo and Furnas. Finally, to test the
performance of the system in control, a third order plant
is used as a process to be controlled. The obtained results
for classification, in most cases, are better than the best
results found by other models and algorithms to which they
were compared. For forecast of electric charges, the
obtained results are always among the best supplied by
other models to which they were compared. Concerning its
application in control, the NFHB-Mamdani model is able to
control, reasonably, the process used for test.
|
9 |
[en] FUZZY MODELS IN SEGMENTATION AND ANALYSIS OF BANK MARKETING / [pt] MODELOS FUZZY NA SEGMENTAÇÃO E ANÁLISE DO MERCADO BANCÁRIOMAXIMILIANO MORENO LIMA 03 October 2008 (has links)
[pt] Este trabalho tem como principal objetivo propor e
desenvolver uma metodologia baseada em modelos fuzzy para a
segmentação e caracterização dos segmentos que compõem o
mercado bancário, permitindo um amplo conhecimento dos
perfis de clientes, melhor adaptação das ofertas ao mercado
e, conseqüentemente, melhores retornos financeiros. A
metodologia proposta nesta dissertação pode ser dividida em
três módulos principais: coleta e tratamento dos
dados; definição dos segmentos; e caracterização e
classificação dos segmentos. O primeiro módulo, denominado
coleta e tratamento dos dados, abrange as
pesquisas de marketing utilizadas na coleta dos dados e a
aplicação de técnicas de pré-processamento de dados, para a
limpeza (remoção de outliers e missing values) e
normalização dos dados. O módulo de definição dos segmentos
emprega o modelo fuzzy de agrupamento Fuzzy C-Means (FCM)
na descoberta de grupos de clientes que apresentem
características semelhantes. A escolha deste modelo de
agrupamento deve-se à possibilidade de análise dos graus de
pertinência de cada cliente em relação aos diferentes
grupos, identificando os clientes entre segmentos
e, conseqüentemente, elaborando ações efetivas para a sua
transição ou manutenção nos segmentos de interesse. O
módulo de caracterização e classificação dos segmentos é
baseado em um Sistema de Inferência Fuzzy. Na
primeira etapa deste módulo são selecionadas as variáveis
mais relevantes, do ponto de vista da informação, para sua
aplicação no processo de extração de
regras. As regras extraídas para a caracterização dos
segmentos são posteriormente utilizadas na construção de um
sistema de inferência fuzzy dedicado à classificação de
novos clientes. Este sistema permite que os analistas
de marketing contribuam com novas regras ou modifiquem as
já extraídas, tornando o modelo mais robusto e a
segmentação de mercado uma ferramenta acessível a todos que
dela se servem. A metodologia foi aplicada na segmentação
de mercado do Banco da Amazônia, um banco estatal que atua
na Amazônia Legal, cujo foco prioritário constitui o
fomento da região. Avaliando a aplicação dos modelos fuzzy
no estudo de caso, observam-se bons resultados na definição
dos segmentos, com médias de valor de silhueta de 0,7, e na
classificação da base de clientes, com acurácia de 100%.
Adicionalmente, o uso destes modelos na segmentação de
mercado possibilitou a análise dos clientes que estão entre
segmentos e a caracterização desses segmentos por meio de
uma base de regras, ampliando as análises dos analistas de
marketing. / [en] The main aim of this work is to propose and develop a
methodology base don fuzzy models for segmentation and
characterization of segments comprising the bank segment,
allowing broad knowledge of client profiles, better suiting
market needs, hence offering better financial results. The
methodology proposed in this work may be divided into three
main modules: data collection and treatment; definition of
segments; and characterization and classification of
segments. The first module, denominated data collection and
treatment, encompasses marketing research used in data
collection and application of techniques for pre-processing
of data, for data trimming (removal of outliers and
missing values) and normalization. The definition of
segments adopts the Fuzzy C-Means (FCM) grouping model in
identifying groups of clients with similar
characteristics. The choice for this grouping model is due
to the possibility of analyzing the membership coefficient
of each client in connection with the different groups,
thus identifying clients among segments and consequently
elaborating effective actions for their transition to or
maintenance in the segments of interest. The module of
characterization and classification of segments is based
on a Fuzzy Inference System. In the first stage, the most
relevant variables from the information standpoint are
selected, for application in the process of rule
extraction. The rules extracted are then used in the
construction of a fuzzy inference system dedicated to
classifying new clients. This system allows
marketing analysts to contribute with new rules or modify
those already extracted, making the model more robust and
the turning market segmentation into a tool
accessible to all using it. This methodology was applied in
the market segmentation of Banco da Amazônia, stte-
contrlled bank acting in the Amazon region, with main focus
of which is fostering the region´s development. The
application of fuzzy models in the case study generated
good results in the definition of segments, with average
silhouette value of 0.7, and accuracy of 100% for client
base classification. Furthermore, the use of these models in
market segmentation allowed the analysis of clients
classified between segments and the characterization of
those segments by means of a set of rules, improving
the analyses made by marketing analysts.
|
10 |
[en] TRAFFIC CONTROL THROUGH FUZZY LOGIC AND NEURAL NETWORKS / [pt] CONTROLE DE SEMÁFOROS POR LÓGICA FUZZY E REDES NEURAISALEXANDRE ROBERTO RENTERIA 17 June 2002 (has links)
[pt] Este trabalho apresenta a utilização de lógica fuzzy e de
redes neurais no desenvolvimento de um controlador de
semáforos - o FUNNCON. O trabalho realizado consiste em
quatro etapas principais: estudo dos fundamentos de
engenharia de tráfego; definição de uma metodologia para a
avaliação de cruzamentos sinalizados; definição do
modelo do controlador proposto; e implementação com dados
reais em um estudo de caso.O estudo sobre os fundamentos de
engenharia de tráfego aborda a definição de termos,os
parâmetros utilizados na descrição dos fluxos de tráfego,
os tipos de cruzamentos e seus semáforos, os sistemas de
controle de tráfego mais utilizados e as diversas medidas de
desempenho.Para se efetuar a análise dos resultados do
FUNNCON, é definida uma metodologia para a avaliação de
controladores. Apresenta-se, também, uma investigação sobre
simuladores de tráfego existentes, de modo a permitir a
escolha do mais adequado para o presente estudo. A
definição do modelo do FUNNCON compreende uma descrição
geral dos diversos módulos que o compõem. Em seguida, cada
um destes módulos é estudado separadamente: o uso de redes
neurais para a predição de tráfego futuro; a elaboração de
um banco de cenários ótimos através de um otimizador; e a
criação de regras fuzzy a partir deste banco.No estudo de
caso, o FUNNCON é implementado com dados reais fornecidos
pela CET-Rio em um cruzamento do Rio de Janeiro e comparado
com o controlador existente.É constatado que redes neurais
são capazes de fornecer bons resultados na predição do
tráfego futuro. Também pode ser observado que as regras
fuzzy criadas a partir do banco de cenários ótimos
proporcionam um controle efetivo do tráfego no cruzamento
estudado. Uma comparação entre o desempenho do FUNNCON e o
do sistema atualmente em operação é amplamente favorável ao
primeiro. / [en] This work presents the use of fuzzy logic and neural
networks in the development of a traffic signal controller -
FUNNCON. The work consists of four main sections: study of
traffic engineering fundamentals; definition of a
methodology for evaluation of traffic controls; definition
of the proposed controller model; and implementation on a
case study using real data.The study of traffic engineering
fundamentals considers definitions of terms,parameters used
for traffic flow description, types of intersections and
their traffic signals,commonly used traffic control systems
and performance measures.In order to analyse the results
provided by FUNNCON, a methodology for the evaluation of
controllers is defined. The existing traffic simulators are
investigated, in order to select the best one for the
present study.The definition of the FUNNCON model includes
a brief description of its modules.Thereafter each module
is studied separately: the use of neural networks for
future traffic prediction; the setup of a best scenario
database using an optimizer; and the extraction of
fuzzy rules from this database.In the case study, FUNNCON
is implemented with real data supplied by CET-Rio
from an intersection in Rio de Janeiro; its performance is
compared with that of the existing controller.It can be
observed that neural networks can present good results in
the prediction of future traffic and that the fuzzy rules
created from the best scenario database lead to an
effective traffic control at the considered intersection.
When compared with the system in operation, FUNNCON reveals
itself much superior.
|
Page generated in 0.0391 seconds