• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 13
  • Tagged with
  • 220
  • 211
  • 209
  • 206
  • 22
  • 20
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Interaction Between Microgels and Oppositely Charged Proteins

Johansson, Christian January 2009 (has links)
This thesis reports on interactions between microgels and oppositely charged proteins. Two types of negatively charged microgels are investigated: poly(acrylic acid) microgels of 60-80 µm in diameter, and colloidal poly(NIPAM-co-acrylic acid) microgels of around 1 µm in diameter. The proteins used are lysozyme and cytochrome c, which both have positive net charge. The experimental techniques used in the studies of the larger microgels are mainly micromanipulator-assisted microscopy and confocal microscopy, while the smaller microgels are studied mainly with dynamic light scattering. It is observed that large amounts of protein are absorbed by the microgels, and that the uptake involves a substantial deswelling of the microgel. The uptake generally decreases as the ionic strength is increased, which is characteristic of electrostatic interactions. An ionic strength optimum is however observed in the case of lysozyme and poly(acrylic acid) microgels, where the highest uptake (10 gram lysozyme / gram microgel) is observed at ionic strength 40 mM. Cytochrome c uptake in poly(acrylic acid) microgels results in homogenous cytochrome c distribution throughout the microgel, whereas lysozyme uptake results in core-shell formation; the lysozyme concentration becomes much higher in the shell (outer part of the microgel) than in the core (inner part of the microgel). The shell constitutes a stress-bearing network which is sufficiently porous to allow protein diffusion through the shell. The different protein distributions are associated with different protein-protein interactions; strong protein-protein attraction promotes shell formation. In the case of colloidal microgels, lysozyme uptake decreases the electrophoretic mobility and the colloidal stability of the microgels. The microgels flocculate as the uptake reaches charge ratio 0.6-0.7 (positive lysozyme charges/negative microgel charges), largely independent of ionic strength. Initial experiments on the combination of cytochrome c and colloidal microgels show that colloidal stability is maintained at a range of conditions (ionic strength, protein concentration) where flocculation occurred in the case of lysozyme.
92

Structural Investigations of Complex Glasses by Solid-state NMR

Leonova, Ekaterina January 2009 (has links)
This PhD thesis presents structural investigations of amorphous inorganic materials: oxide and oxynitride glasses and mesoporous bioactive glasses (MBGs), by solid-state Nuclear Magnetic Resonance (NMR). Lanthanum oxide and oxynitride [La-Si-(Al)-O-(N)] glasses have a large number of potential applications due to their physical properties. In our work we have studied, compared to previous investigations, significantly expanded ranges of glass compositions (for oxynitride glasses, including samples of very high nitrogen content, up to 53 % out of the anions). We have estimated local environments of 29Si and 27Al structural units (their coordination, polymerization degree and number of N incorporated into tetrahedral units) in the materials. We have suggested a random Al/Si distribution along with almost uniform non-bridging oxygen atoms distribution in aluminosilicate glasses. Silicon nitride was used as precursor in the oxynitride glass synthesis. We studied both α- and β-modifications of silicon nitride, 15N-enriched, as well as fully (29Si, 15N)-enriched samples. We have shown that the linewidths of 15N NMR spectra are dominated by J(29Si-15N) coupling in 29Si315N4 sample. Mesoporous bioactive glasses in the CaO-SiO2-P2O5 system show superior bioactivity (the ability to form a hydroxycarbonate apatite layer on the glass surface when exposed to body fluids) compared to conventional bioactive glasses due to their large surface area and uniform pore-size distribution. Previous studies suggested a homogeneous cation distribution over the MBG samples on a 10−20 nm length-scale. From our results, on the other hand, we may conclude that Si and P is not intimately mixed. We propose a structural model, in which the pore walls of MBGs are composed of a silica network, and a phosphate phase is present as nanometer-sized clusters that are dispersed on the pore wall.
93

Studies of Charge Transport Processes in Dye-sensitized Solar Cells

Fredin, Kristofer January 2007 (has links)
Dye-sensitized solar cells (DSCs) have attained considerable attention during the last decade because of the potential of becoming a low cost alternative to silicon based solar cells. Although efficiencies exceeding 10% in full sunlight have been presented, major improvements of the system are however limited. Electron transport is one of the processes in the cell and is of major importance for the overall performance. It is further a complex process because the transport medium is a mesoporous film and the pores are completely filled by an electrolyte with high ionic strength, resulting in electron-ion interactions. Therefore, present models describing electron transport include simplifications, which limit the practical use, in terms of improving the DSC, because the included model parameters usually have an effective nature. This thesis focuses in particular on the influence of the mesoporous film on electron transport and also on the influence of electron-ion interactions. In order to model diffusion, which is assumed to be the transport process for electrons in the DSC, Brownian motion simulations were performed and spatial restrictions, representing the influence of the mesoporous film, were introduced by using representative models for the structure. The simulations revealed that the diffusion coefficient is approximately half the value for electrons and ions in mesoporous systems. To study the influence of ions, a simulation model was constructed in where electric fields were calculated with respect to the net charge densities, resulting from the different charge carrier distributions. The simulations showed that electron transport is highly dependent on the nature of the ions, supporting an ambipolar diffusion transport model. Experimentally, it was found that the transport process is dependent on the wavelength of the incident light; we found that the extracted current was composed of two components for green light illumination, one fast and one slow. The slow component showed similar trends as the normal current. Also we found that the transport coefficient scaled linearly with film thickness for a fixed current, which questions diffusion as transport process. Other experiments, investigating various effects in the DSC, such as the effect of different cations in the electrolyte, are also presented. / QC 20100708
94

Charge Transport Processes in Mesoporous Photoelectrochemical Systems

Nissfolk, Jarl January 2009 (has links)
During the last decade, the dye sensitised solar cell (DSC) has attracted much attention. The technology has a potential to act as a new generation of photovoltaic device, it has also increased our knowledge within the field of photoelectrochemistry. The materials used in the DSC have been used in other technologies, such as electrochromic displays. This thesis examines how such systems can be analysed to understand their properties from their components. Both of the considered device technologies consist of a thin mesoporous semiconductor film immersed in an electrolyte. The study starts by investigating some of the fundamental properties of the mesoporous semiconductor and its interface with the electrolyte. This gives rise to the charge-voltage relationship for the devices, which is related to the chemical capacitance and electronic energy levels for the materials. In particular,special attention is given to the DSC and the properties of the charge carriers in the semiconductor. For the DSC, several techniques have been developed in order to understand the processes of transport and recombination for the charge carriers in the semiconductor film, which are vitally important for performance. In this thesis, particular focus is given to light modulation techniques and electrical analysis with impedance spectroscopy. The transportproperties show for both techniques a nonlinear behaviour, which is explained with the trapping model. The DSC solar cell is analysed in order to interpret the transport measurements for film thickness optimisation. DSC cells with new semiconductor materials, such as ZnO, were analysed with impedance measurements to provide new insights into the optimisation of the performance of the photoelectrochemical solar cell technology. / QC 20100804
95

Drugs and polymers in dissolving solid dispersions : NMR imaging and spectroscopy

Dahlberg, Carina January 2010 (has links)
The number of poorly water-soluble drug substances in the pharmaceutical pipeline is increasing, and thereby also the need to design effective drug delivery systems providing high bioavailability. One favourable formulation approach is preparation of solid dispersions, where dispersing a poorly water-soluble drug in a water-soluble polymer matrix improves the dissolution behaviour and the bioavailability of the drug. However, in order to take full advantage of such formulations the impact of material properties on their performance needs to be investigated.   An experimental toolbox has been designed, and applied, for analysing the processes which govern the behaviour of solid pharmaceutical formulations in general, and that of solid dispersions in particular. For the purpose of monitoring multifaceted phenomena in situ during tablet dissolution, nuclear magnetic resonance (NMR) spectroscopy and NMR imaging are superior to many other techniques, both on macroscopic and molecular levels. The versatility of NMR with its isotope and chemical selectivity allows one to follow the influence of the original tablet properties on polymer mobilisation, drug migration and water penetration selectively. Mapping these processes on relevant time scales in dissolving tablets highlighted the gel layer inhomogeneity below the originally dry tablet surface as a key factor for drug release kinetics.   Furthermore, NMR relaxometry has been shown to provide novel information about the particle size of the drug and its recrystallisation behaviour within swelling solid dispersions. The NMR experiments have been complemented and supported by investigation of the crystalline state, the powder morphology and the surface composition of the dry solid dispersions. These experiments have been performed by X-ray photoelectron spectroscopy (XPS),  scanning electron microscopy (SEM), powder X-ray diffraction (pXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dynamic contact angle (DAT) measurements.   The methods presented in this thesis provide a new avenue towards better understanding of the behaviour of solid dispersions, which in turn may result in more effective distribution of promising drug candidates despite their low water-solubility. / En allt större andel av de läkemedelssubstanser som idag är av intresse för den farmaceutiska industrin är svårlösliga i vatten. För att trots detta erhålla hög biotillgänglighet måste man utveckla beredningsformer som medger effektiv frisättning av den aktiva substansen. En lovande sådan beredningsform utgörs av fasta dispersioner, där den svårlösliga substansen finfördelas i en vattenlöslig polymer. För att utnyttja dessa dispersioners potential fullt ut måste dock materialegenskapernas inverkan på deras beteende kartläggas i större utsträckning än vad som tidigare gjorts.   En uppsättning experimentella metoder har i detta arbete utvecklats och använts för att analysera de processer som styr beteendet hos fasta läkemedelsberedningar i allmänhet, och fasta dispersioner i synnerhet. För observation av sådana processer in situ, under pågående tablettupplösning, är NMR-spektroskopi (kärnmagnetisk resonans-spektroskopi) och NMR-avbildning överlägsna många andra tekniker, både på makroskopisk och på molekylär nivå. NMR är en mångsidig metod med både isotop- och kemisk selektivitet. Genom att utnyttja dessa möjligheter kan de enskilda sambanden mellan den ursprungliga tablettens materialegenskaper och polymermobilisering, vatteninträngning och den aktiva substansens migrering följas separat. Kartläggning av dessa processer, på relevanta tidsskalor i tabletter under upplösning, påvisar att gellagrets inhomogenitet inuti den ursprungliga tabletten har stor betydelse för frisättningskinetiken.   Vidare visar sig NMR-relaxometri ge värdefull information om den aktiva substansens partikelstorlek och dess omkristallisationsbeteende i fasta dispersioner under svällning och upplösning. NMR-experimenten kompletteras med oberoende karakterisering av det kristallina tillståndet, pulvermorfologin och ytsammansättningen hos de torra fasta dispersionerna. Dessa experiment utförs med hjälp av XPS (röntgen-fotoelektronspektroskopi), SEM (elektronmikroskopi), pXRD (pulver-röntgendiffraktion), DCS (differentiell kalorimetri), FTIR (infraröd Fourier transform spektroskopi) och DAT (dynamisk kontaktvinkel) mätningar.   De metoder som presenteras i den här avhandlingen pekar mot nya vägar att nå djupare förståelse för beteendet hos fasta dispersioner, vilket i sin tur kan leda till att fler lovande läkemedelssubstanser kan distribueras effektivt trots begränsad vattenlöslighet. / QC 20100915
96

Analys och modellering av magnetisk minsvepning för marina ändamål / Analysis and modelling of magnetic mine sweep for naval purposes

Lindin, Andreas January 2007 (has links)
<p>I detta examensarbete har en metod för att utvärdera magnetiska minsvep utvecklats. Som beräkningsmodell används en SAM, Självgående Akustisk-magnetisk Minsvepare utvecklad av Kockums AB, ThyssenKrupp Marine Systems. I arbetet skapas en magnetisk modell för en SAM som beskriver sambandet mellan det alstrade magnetfältet och de utställda strömmarna. Vidare analyseras två olika metoder, multipolutveckling i prolata sfäroidala koordinater samt en uppsättning av dipoler, för att skapa en koncis modell över den magnetiska signatur som skapas av ett fartyg. Denna modell kan sedan användas för att optimera strömutstyrningen så att det genererade magnetfältet på ett så bra sätt som möjligt efterliknar det givna fartyget. Arbetet avslutas med att ta fram utvärderingsalgoritmer för tre olika typer av magnetiska minor.</p> / <p>In this Master's dissertation, a method to evaluate magnetic mine sweep is developed. As a calculation model, a Self-propelled Acoustic Magnetic Mine Sweep (SAM), developed by Kockums AB, ThyssenKrupp Marine Systems, is used. A model that describes the generated magnetic flux density from a SAM as a function of the feed current is developed. Furthermore, two methods to model the magnetic signature from a ship are employed; multipole expansion in prolate spheroidal coordinates and an array of magnetic point dipoles. Using these models makes it possible to optimise the feed current so that the magnetic flux density from a SAM is as similar to the ship’s signature as possible. Finally, algorithms to evaluate a mine sweep with respect to three different types of naval mines are developed.</p>
97

Adsorption of Polyvinyl Alcohol on Nano-Cellulose Fibers

Hussain, Arif January 2010 (has links)
Nano-cellulose fibers/suspension has very high viscosity, its viscosity has to be lower before it can be applied in the paper coating recipe. For this purpose the adsorption behaviour of polyvinyl alcohol on nano-cellulose fibers were investigated using method developed by Zwick in 1960, based on the formation of PVA-iodide blue complex in the presence of boric acid. The experiments showed that the maximum adsorbed amount i.e. 0.13 g PVA/g NFC was obtained in a dispersion with 0.2 % PVA concentration. It should be possible to further increase the PVA adsorption as the adsorbed amount didn’t reach a saturation point where the PVA adsorption attained a constant value. It was also found that adsorption of PVA on NFC is time dependent. The absorbance measurement after four days of mixing PVA/NFC suspension showed only partially adsorption of PVA on nano-cellulose surface.  An equilibrium time of 10-13 days was needed for PVA to fully adsorb on nano-cellulose fibers surface. Another important observation was that PVA adsorption also depends on the concentration of nano-cellulose fibers. A lower concentration of NFC easily allows PVA to adsorb on its surface, as compared to higher NFC concentration. An important finding during the methodology development was the method to get rid of formation of flocs in the blue iodide complex solution; by slowly addition of reactants, especially the KI/I2 solution under continuous stirring around 60oC the tendency to flocs formation was suppressed.
98

Analys och modellering av magnetisk minsvepning för marina ändamål / Analysis and modelling of magnetic mine sweep for naval purposes

Lindin, Andreas January 2007 (has links)
I detta examensarbete har en metod för att utvärdera magnetiska minsvep utvecklats. Som beräkningsmodell används en SAM, Självgående Akustisk-magnetisk Minsvepare utvecklad av Kockums AB, ThyssenKrupp Marine Systems. I arbetet skapas en magnetisk modell för en SAM som beskriver sambandet mellan det alstrade magnetfältet och de utställda strömmarna. Vidare analyseras två olika metoder, multipolutveckling i prolata sfäroidala koordinater samt en uppsättning av dipoler, för att skapa en koncis modell över den magnetiska signatur som skapas av ett fartyg. Denna modell kan sedan användas för att optimera strömutstyrningen så att det genererade magnetfältet på ett så bra sätt som möjligt efterliknar det givna fartyget. Arbetet avslutas med att ta fram utvärderingsalgoritmer för tre olika typer av magnetiska minor. / In this Master's dissertation, a method to evaluate magnetic mine sweep is developed. As a calculation model, a Self-propelled Acoustic Magnetic Mine Sweep (SAM), developed by Kockums AB, ThyssenKrupp Marine Systems, is used. A model that describes the generated magnetic flux density from a SAM as a function of the feed current is developed. Furthermore, two methods to model the magnetic signature from a ship are employed; multipole expansion in prolate spheroidal coordinates and an array of magnetic point dipoles. Using these models makes it possible to optimise the feed current so that the magnetic flux density from a SAM is as similar to the ship’s signature as possible. Finally, algorithms to evaluate a mine sweep with respect to three different types of naval mines are developed.
99

Effects of physical training on physical performance in frail elderly people /

Rydwik, Elisabeth, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
100

Hand function in children and in persons with neurological disorders : aspects of movement control and evaluation of measurements /

Svensson, Elisabeth, January 2009 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2009. / Härtill 4 uppsatser.

Page generated in 0.0511 seconds