• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 13
  • Tagged with
  • 220
  • 211
  • 209
  • 206
  • 22
  • 20
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Quantum Chemical Investigations of Phenol and Larger Aromatic Molecules on TiO2 Surface

Karlsson, Maria January 2004 (has links)
Adsorption of organic molecules at a surface of titanium dioxide (101) anatase is studied using quantum-chemical density functional theory. Anatase can be used in solar cells. For the clean anatase surface the band gap is so large that only UV-light can excite electrons. Different groups with conjugated systems are attached to obtain a more suitable band gap. Phenol was attached in different positions to a cluster of anatase and geometry optimized using the B3LYP-functional. The geometry that was energetically most favorable was used to put in phenylmethanol, phenylethanol, naphthol, 2-phenanthrol, 1-pyrol and 2-perylol. To give a more realistic model of phenol at anatase, a study of a two- dimensional periodic anatase surface was also made. Molecular orbitals were calculated to study the overlap between HOMO and LUMO orbitals. The calculation shows that phenol will remain as a molecule and will not dissociate. The band gap gets smaller when molecules are attached at the cluster and with 2-perylol it reaches the energy of visible light. The molecular orbitals for HOMO, LUMO and LUMO of the adsorbed molecule were investigated. HOMO was localized at the molecule, LUMO at the cluster and LUMO of the adsorbed molecule move closer to the energy of LUMO when the number of rings increases.
62

Amphiphilic Molecules in Aqueous Solution

Persson, Gerd January 2003 (has links)
<p>The aim of this thesis was to investigate amphiphilic molecules in aqueous solution. The work was divided into two parts. In the first part the effects of different counterions on phase behavior was investigated, while the second part concerns the 1-monooleoyl-rac-glycerol (MO)/n-octyl-β-D-glucoside (OG)/2H2O-system. </p><p>The effects of mixing monovalent and divalent counterions were studied for two surfactant systems, sodium/calcium octyl sulfate, and piperidine/piperazine octanesulfonate. It was found that mixing monovalent and divalent counterions resulted in a large decrease in cmc already at very low fractions of the divalent counterion. Moreover, the degree of counterion binding for piperidine in the piperidine/piperazine octanesulfonate system was much higher than predicted, probably due to the larger hydrophobic moiety of piperidine.</p><p>The effects of hydrophobic counterions were studied for eight alkylpyridinium octanesulfonates (APOS). The results were discussed in terms of packing constraints. The anomalous behavior of the 2H2O quadrupolar splittings in the lamellar phases was explained by the presence of two or more binding sites at the lamellae surface. </p><p>The MO/OG/water system was studied in general and the MO-rich cubic phases in particular. When mixing MO and OG it was found that OG-rich structures (micelles, hexagonal and cubic phase of space group Ia3d) could solubilize quite large amounts of MO, while the MO-rich cubic structures where considerable less tolerant towards the addition of OG. The micelles in the OG-rich L1 phase were found to remain rather small and discrete in the larger part of the L1 phase area, but at low water concentration and high MO content a bicontinuous structure was indicated. Only small fractions of OG was necessary to convert the MO-rich cubic Pn3m structure to an Ia3d structure, and upon further addition of OG a lamellar (La) phase formed. Since the larger part of the phase diagram contains a lamellar structure (present either as a single La phase or as a dispersion of lamellar particles together with other phases), the conclusion was that introducing OG in the MO structures, forces the MO bilayer to become more flat. Upon heating the cubic phases, structures with more negative curvature were formed. The transformation between the cubic structures required very little energy, and this resulted in the appearance of additional peaks in the diffractograms.</p>
63

Liposomes for Drug Delivery : from Physico-chemical Studies to Applications

Bergstrand, Nill January 2003 (has links)
<p>Physico-chemical characterisation of structure and stability of liposomes intended for drug delivery is the central issue in this thesis. In addition, targeted liposomes to be used in boron neutron capture therapy (BNCT) were developed.</p><p>Lysolipids and fatty acids are products formed upon hydrolysis of PC-lipids. The aggregate structure formed upon mixing lysolipids, fatty acids and EPC were characterised by means of cryo-TEM. A relatively monodisperse population of unilamellar liposomes was detected in mixtures containing equimolar concentration of the three components. </p><p>The interactions between alternative steric stabilisers (PEO-PPO-PEO copolymers) and conventional PC-and pH-sensitive PE-liposomes were investigated. Whereas the PE-liposomes could be stabilised by the PEO-PPO-PEO copolymers, the PC-liposomes showed an enhanced permeability concomitant with the PEO-PPO-PEO adsorption.</p><p>Permeability effects induced by different PEG-stabilisers on EPC liposomes were shown to be dependent on the length of the PEG chain but also on the linkage used to connect the PEG polymer with the hydrophobic membrane anchor.</p><p>An efficient drug delivery requires, in most cases, an accumulation of the drug in the cell cytoplasm. The mechanism behind cytosolic drug delivery from pH-sensitive liposomes was investigated. The results suggest that a destabilisation of the endosome membrane, due to an incorporation of non-lamellar forming lipids, may allow the drug to be released. </p><p>Furthermore, sterically stabilised liposomes intended for targeted BNCT have been characterised and optimised concerning loading and retention of boronated drugs. </p>
64

Bilayers with Surfactant-induced Pores and Demixing in Micelles : Studies of Segregation in Amphiphile Systems

Kadi, Mari January 2003 (has links)
<p>The focus of this thesis has been on the effects of segregation in mixtures of amphiphilic molecules. Two different systems were investigated: fluorocarbon-hydrocarbon surfactant mixtures and lipid-surfactant mixtures.</p><p>In fluorocarbon-hydrocarbon surfactant mixtures the repulsive interactions between the chains can lead to a demixing into different types of coexisting micelles, fluorocarbon rich and hydrocarbon rich. From NMR self-diffusion measurements such a demixing was found to occur in the mixture of the partially fluorinated surfactant HFDePC and C<sub>16</sub>TAC. We furthermore suggested a demixing also within the micelles to explain <sup>19</sup>F-NMR line width data and results from neutron scattering.</p><p>In lipid-surfactant mixtures, a segregation of the molecules may instead be caused by a difference in the preferred curvature of the lipid and the surfactant residing within the same aggregate. Using a surfactant selective electrode, binding isoterms of four different cationic surfactants (C<sub>12</sub>TAC, C<sub>14</sub>TAC, C<sub>16</sub>TAC and HFDePC) to preformed lipid (GMO) vesicles were determined. Perforated vesicles were observed by cryo-TEM in the mixture with C<sub>16</sub>TAC. To explain the results from the binding isoterms, the formation of pores in the bilayer was regarded as a cooperative process, similar to micelle formation. The surfactant accumulates at the edges of the pores, and increasing the surfactant concentration results in an increased number of pores with a constant surfactant/lipid ratio at the edges.</p><p>The lipid-surfactant mixtures were also studied at the solid/solution interface using AFM. An adsorbed mesh structure, a counterpart to the bulk perforated lamellar phase, was observed for the first time.</p>
65

Ultrafast Photo-induced Reaction Dynamics of Small Molecules

Kadi, Malin January 2003 (has links)
<p>The main focus of this thesis is the investigation of the dissociation dynamics of aryl halides using femtosecond pump-probe spectroscopy. In the monohalogenated aryl halides, iodo-, bromo- and chlorobenzene, the rate of dissociation following excitation at 266 nm in the gas phase increased with increasing mass of the halogen atom. This process was assigned to predissociation of the initially excited singlet (π, π*) state via a repulsive triplet (n, σ*) state due to spin-orbit interaction. In addition to the predissociative mechanism, a direct dissociation channel was observed in iodobenzene. The rate of the predissociation in bromobenzene was found to be faster in the condensed phase than in the gas phase, which can be explained by solvent-induced symmetry perturbations. <i>Ab initio</i> calculations of the potential energy surfaces of the ground state and several low lying excited states in bromobenzene have been performed in order to verify the suggested mechanism. Substituting one of the hydrogen atoms in bromobenzene affected the predissociation rate significantly. In o-, m- and p-dibromobenzene the predissociation rate increased with decreasing distance between the bromine atoms in accordance with an increased spin-orbit interaction introduced by the bromine substituent. The fastest predissociation rate was observed in 1,3,5-tribromobenzene. With chlorine and fluorine substitution, inductive and conjugative effects were found to be of importance. In the o- and m-isomers of the dihalogenated aryl halides, an additional faster dissociation channel was observed. Guided by <i>ab initio</i> calculations of the potential energy surfaces in the dibromobenzene isomers, we ascribed the fast dissociation pathway to predissociation of an initially excited triplet state. Upon methyl group substitution in bromobenzene, the decreased lifetime of the initially excited state was attributed to an incresaed density of coupled states.</p><p>Another system which has been studied in the condensed phase is diiodomethane. Using Car-Parrinello molecular dynamics simulations we observed a prompt dissociation and subsequent recombination to the isomer, iso-diiodomethane, in acetonitrile solution.</p><p>Vibrational wavepacket dynamics in the C (<sup>1</sup>Σ<sup>+</sup>) state of NaK were studied using a direct ionization probing scheme. A simple analytical expression for the pump-probe signal was developed in order to see what factors that govern direct ionization of the vibrational wavepacket. Our experimental data was consistent with a photoionization transition dipole moment that varies with internuclear distance.</p>
66

Regulation of Proton Coupled Electron Transfer from Amino Acids in Artificial Model Systems: A Mechanistic Study / En Mekanistisk Studie rörande Reglering av Protonkopplad Elektronöverföring från Aminosyror i Artificiella Modellsystem

Sjödin, Martin January 2004 (has links)
<p>Amino acid radicals are key redox intermediates in several natural enzymes including Cytochrome c peroxidase, DNA photolyase, ribonucletide reductase, cytochrome c oxidase and photosystem II. Electron transfer from amino acids is often coupled to deprotonation and this thesis concerns the coupling of electron transfer from tyrosine and tryptophan to trisbipyridineruthenium(III) with deprotonation in model complexes. Specifically the mechanisms for these proton coupled electron transfer reactions have been studied and the controlling parameters have been identified, the possible mechanisms being stepwise electron transfer followed by deprotonation and deprotonation followed by electron transfer or concerted electron transfer/deprotonation.</p><p>Proton coupled electron transfer reactions have been studied using nano-second flash photolysis in water solution and the effect of pH, temperature, reaction driving force, deuteration and nature of the amino acid has been determined. I have shown that the rate constant for the concerted reaction depends intrinsically on the mixing entropy of the released proton and that the pH-dependence can be used as an experimental tool for mechanistic discrimination. Moreover I have shown that the concerted reaction inherently has a high reorganisation energy due to the coupling of the electron motion with deprotonation. Hydrogen bonding to the transferring proton however significantly reduces this reorganisation energy. The concerted reaction also has a relatively high driving force counteracting the high reorganisation energy in the competition between the concerted reaction and the stepwise electron transfer first reaction. The relative importance of the high reorganisation energy and the high driving force for the concerted reaction determines the mechanistic outcome of the reaction, the stepwise reaction being favoured by high over-all driving forces and the concerted reaction by high pH.</p><p>By comparing my results from model complexes with tyrosineZ oxidation in photosystem II, I give strong evidence for a concerted electron transfer/deprotonation mechanism.</p>
67

Phase Transformations in Solid Pharmaceutical Materials Studied by AFM, ESCA, DSC and SAXS

Mahlin, Denny January 2004 (has links)
<p>Mixing excipients is a common way to produce pharmaceutical materials with suitable properties for drug formulation. An understanding of the basic mechanisms involved in the formation and transformation of the structures of solid state mixtures is crucial if one is to be able to produce materials with the desired properties in a reliable way. </p><p>In the first part of the thesis, the atomic force microscopy (AFM) technique was used to visualise the re-crystallisation of spray-dried amorphous particles comprised of lactose and PVP. The transformation was quantified on a single particle level and analysed with a common kinetic model, the JMAK-equation. The way in which the PVP was incorporated into the particles and the impact this had on their physical stability on exposure to increasing levels of humidity was investigated. The amount and, to a certain extent, the molecular weight of the PVP affected the moisture induced crystallisation of the particles. The inhibition was further discussed in terms of nucleation and growth. </p><p>In the second part of the thesis, the formation of phases in solid dispersions of monoolein (MO) in PEGs was studied by the use of SAXS and DSC. Upon solidification of a melt, the components phase separated, resulting in a PEG-rich phase and an MO phase. MO was intercalated into the amorphous domains of the lamellar structure of PEG. A second MO phase appeared in the mixtures where the average molecular weight of PEG was 1500 and 4000 g/mol. It was hypothesised that this second phase was formed in conjunction with the expulsion of MO as the PEG unfolded. </p><p>This thesis describes the application of two relatively unexplored solid state techniques on two different solid mixtures of pharmaceutical interest and, in so doing, contributes to the knowledge of phase formation and transformations in the solid state.</p>
68

Controlling Charge and Energy Transfer Processes in Artificial Photosynthesis : From Picosecond to Millisecond Dynamics

Borgström, Magnus January 2005 (has links)
<p>This thesis describes an interdisciplinary project, where the aim is to mimic the initial reactions in photosynthesis. In photosynthesis, the absorption of light is followed by the formation of charge-separated states. The energy stored in these charge-separated states is further used for the oxidation of water and reduction of carbon dioxide. In this thesis the photo-induced processes in a range of supramolecular complexes have been investigated with time resolved spectroscopic techniques. The complexes studied consist of three types of units; photosensitizers (P) capable of absorbing light, electron acceptors (A) that are easily reduced and electron donors (D) that are easily oxidised. Our results are important for the future design of artificial photosystems, where the goal is to produce hydrogen from light and water. </p><p>Two molecular triads with a D-P-A architecture are presented. In the first one, a photo-induced charge-separated state was formed in an unusually high yield (φ>90%). In the second triad, photo-irradiation led to the formation of an extremely long-lived charge-separated state (τ = 500 ms at 140K). This is also the first synthetically made triad containing a dinuclear manganese unit as electron donor.</p><p>Further, two sets of P-A dyads are presented. In both, the expected photo-induced reduction of the electron acceptor is diminished due to competing energy transfer to the triplet state of the acceptor.</p><p>Finally, a P-P-A complex containing two separate photosensitizers is described. The idea is to produce high-energy charge-separated states by using the energy from two photons.</p>
69

The Fate of Electronically Excited States : Ultrafast Electron and Energy Transfer in Solvated Donor-Acceptor Systems

Wallin, Staffan January 2005 (has links)
<p>Processes where a molecule absorbs visible light and then disposes of the excess energy via electron/energy transfer reactions have an important role both in nature (e.g. in photosynthesis) and in many technical applications (e.g. in photography and photovoltaics). This thesis uses different spectroscopical techniques, mainly ultrafast transient absorption, to study such processes. The thesis can roughly be divided into three parts.</p><p>In the first part, donor-acceptor systems linked by different conjugated bridges are studied. The objective was to see to what extent the conjugated link could enhance excited state energy or electron transfer, via so-called superexchange processes. The studied links do enhance the electron/energy transfer but in the electron transfer study the resulting charge separated state was very short lived.</p><p>The second part explores the possibility of constructing acceptor-donor-acceptor triads where the direction of electron transfer is determined by the electronic state of the donor. Direct evidence of electron transfer in the form of radical absorption was found from both the first and the second excited states of the donor.</p><p>In the last part, two common chromophores were investigated by transient absorption anisotropy. In the case of Ru(bpy)<sub>3</sub><sup>2+</sup>, it was found that the complex lost all memory of the polarization of the exciting light much faster than what was previously thought. This means that electron transfer between ligands is normally not the rate limiting step in electron transfer reactions involving this complex. In the case of zinc porphyrin, it was seen that the measured anisotropy differed depending on which electronic state was excited suggesting differences in the degree of coherence.</p>
70

Amphiphilic Molecules in Aqueous Solution

Persson, Gerd January 2003 (has links)
The aim of this thesis was to investigate amphiphilic molecules in aqueous solution. The work was divided into two parts. In the first part the effects of different counterions on phase behavior was investigated, while the second part concerns the 1-monooleoyl-rac-glycerol (MO)/n-octyl-β-D-glucoside (OG)/2H2O-system. The effects of mixing monovalent and divalent counterions were studied for two surfactant systems, sodium/calcium octyl sulfate, and piperidine/piperazine octanesulfonate. It was found that mixing monovalent and divalent counterions resulted in a large decrease in cmc already at very low fractions of the divalent counterion. Moreover, the degree of counterion binding for piperidine in the piperidine/piperazine octanesulfonate system was much higher than predicted, probably due to the larger hydrophobic moiety of piperidine. The effects of hydrophobic counterions were studied for eight alkylpyridinium octanesulfonates (APOS). The results were discussed in terms of packing constraints. The anomalous behavior of the 2H2O quadrupolar splittings in the lamellar phases was explained by the presence of two or more binding sites at the lamellae surface. The MO/OG/water system was studied in general and the MO-rich cubic phases in particular. When mixing MO and OG it was found that OG-rich structures (micelles, hexagonal and cubic phase of space group Ia3d) could solubilize quite large amounts of MO, while the MO-rich cubic structures where considerable less tolerant towards the addition of OG. The micelles in the OG-rich L1 phase were found to remain rather small and discrete in the larger part of the L1 phase area, but at low water concentration and high MO content a bicontinuous structure was indicated. Only small fractions of OG was necessary to convert the MO-rich cubic Pn3m structure to an Ia3d structure, and upon further addition of OG a lamellar (La) phase formed. Since the larger part of the phase diagram contains a lamellar structure (present either as a single La phase or as a dispersion of lamellar particles together with other phases), the conclusion was that introducing OG in the MO structures, forces the MO bilayer to become more flat. Upon heating the cubic phases, structures with more negative curvature were formed. The transformation between the cubic structures required very little energy, and this resulted in the appearance of additional peaks in the diffractograms.

Page generated in 0.2418 seconds