• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafast Photo-induced Reaction Dynamics of Small Molecules

Kadi, Malin January 2003 (has links)
<p>The main focus of this thesis is the investigation of the dissociation dynamics of aryl halides using femtosecond pump-probe spectroscopy. In the monohalogenated aryl halides, iodo-, bromo- and chlorobenzene, the rate of dissociation following excitation at 266 nm in the gas phase increased with increasing mass of the halogen atom. This process was assigned to predissociation of the initially excited singlet (π, π*) state via a repulsive triplet (n, σ*) state due to spin-orbit interaction. In addition to the predissociative mechanism, a direct dissociation channel was observed in iodobenzene. The rate of the predissociation in bromobenzene was found to be faster in the condensed phase than in the gas phase, which can be explained by solvent-induced symmetry perturbations. <i>Ab initio</i> calculations of the potential energy surfaces of the ground state and several low lying excited states in bromobenzene have been performed in order to verify the suggested mechanism. Substituting one of the hydrogen atoms in bromobenzene affected the predissociation rate significantly. In o-, m- and p-dibromobenzene the predissociation rate increased with decreasing distance between the bromine atoms in accordance with an increased spin-orbit interaction introduced by the bromine substituent. The fastest predissociation rate was observed in 1,3,5-tribromobenzene. With chlorine and fluorine substitution, inductive and conjugative effects were found to be of importance. In the o- and m-isomers of the dihalogenated aryl halides, an additional faster dissociation channel was observed. Guided by <i>ab initio</i> calculations of the potential energy surfaces in the dibromobenzene isomers, we ascribed the fast dissociation pathway to predissociation of an initially excited triplet state. Upon methyl group substitution in bromobenzene, the decreased lifetime of the initially excited state was attributed to an incresaed density of coupled states.</p><p>Another system which has been studied in the condensed phase is diiodomethane. Using Car-Parrinello molecular dynamics simulations we observed a prompt dissociation and subsequent recombination to the isomer, iso-diiodomethane, in acetonitrile solution.</p><p>Vibrational wavepacket dynamics in the C (<sup>1</sup>Σ<sup>+</sup>) state of NaK were studied using a direct ionization probing scheme. A simple analytical expression for the pump-probe signal was developed in order to see what factors that govern direct ionization of the vibrational wavepacket. Our experimental data was consistent with a photoionization transition dipole moment that varies with internuclear distance.</p>
2

Ultrafast Photo-induced Reaction Dynamics of Small Molecules

Kadi, Malin January 2003 (has links)
The main focus of this thesis is the investigation of the dissociation dynamics of aryl halides using femtosecond pump-probe spectroscopy. In the monohalogenated aryl halides, iodo-, bromo- and chlorobenzene, the rate of dissociation following excitation at 266 nm in the gas phase increased with increasing mass of the halogen atom. This process was assigned to predissociation of the initially excited singlet (π, π*) state via a repulsive triplet (n, σ*) state due to spin-orbit interaction. In addition to the predissociative mechanism, a direct dissociation channel was observed in iodobenzene. The rate of the predissociation in bromobenzene was found to be faster in the condensed phase than in the gas phase, which can be explained by solvent-induced symmetry perturbations. Ab initio calculations of the potential energy surfaces of the ground state and several low lying excited states in bromobenzene have been performed in order to verify the suggested mechanism. Substituting one of the hydrogen atoms in bromobenzene affected the predissociation rate significantly. In o-, m- and p-dibromobenzene the predissociation rate increased with decreasing distance between the bromine atoms in accordance with an increased spin-orbit interaction introduced by the bromine substituent. The fastest predissociation rate was observed in 1,3,5-tribromobenzene. With chlorine and fluorine substitution, inductive and conjugative effects were found to be of importance. In the o- and m-isomers of the dihalogenated aryl halides, an additional faster dissociation channel was observed. Guided by ab initio calculations of the potential energy surfaces in the dibromobenzene isomers, we ascribed the fast dissociation pathway to predissociation of an initially excited triplet state. Upon methyl group substitution in bromobenzene, the decreased lifetime of the initially excited state was attributed to an incresaed density of coupled states. Another system which has been studied in the condensed phase is diiodomethane. Using Car-Parrinello molecular dynamics simulations we observed a prompt dissociation and subsequent recombination to the isomer, iso-diiodomethane, in acetonitrile solution. Vibrational wavepacket dynamics in the C (1Σ+) state of NaK were studied using a direct ionization probing scheme. A simple analytical expression for the pump-probe signal was developed in order to see what factors that govern direct ionization of the vibrational wavepacket. Our experimental data was consistent with a photoionization transition dipole moment that varies with internuclear distance.
3

Ionization of diatomic molecules in intense laser fields

Hussien, Abdou Mekky Mousa 06 October 2015 (has links)
In dieser Arbeit wurde die Ionisation einiger zweiatomiger Moleküle (H2, N2 und O2) in intensiven Laserfeldern untersucht. Hierbei wurden verschiedene Modelle zur Beschreibung der Tunnelionisation sowohl untereinander als auch mit der Lösung der zeitabhängigen Schrödingergleichung (TDSE) verglichen. Die kernabstandsabhängige Ionisationswahrscheinlichkeit wurde für verschiedene Intensitäten betrachtet und die Gültigkeit modifizierter atomarer bzw. Molekularer Modelle zur Beschreibung der Tunnelionisation analysiert. Es wurde herausgefunden, dass Modelle, die auf der quasistatischen Näherung beruhen (wo die Ionisation unabhängig von der Frequenz des Laserfeldes ist), nur in einem kleinem Frequenz- und Intensitätsbereich hinreichend genaue Ergebnisse liefern, dem Tunnelregime. Modelle mit einem frequenzabhängigen Faktor stimmen hingegen sowohl im Tunnel- als auch im Mehrphotonenregime mit den genaueren TDSE Ergebnissen überein. Weiterhin wird auch die Abweichung zur Franck-Condon Näherung verdeutlicht. Es wurde ein kleiner Einfluss auf die Revival-Zeit des im Wasserstoffmolekül-Ion gestarteten Wellenpakets gefunden. Die Berücksichtigung von Bond-Softening führt weiterhin zu einer Verringerung der Revival-Zeit mit steigender Spitzenintensität des Lasers. Außerdem wird die Anisotropie der Ionisation von H2 als Funktion der Laserintensität in linear und zirkular polarisiertem Licht mit dem molekularen Tunnelmodell MO-ADK untersucht. Gute Übereinstimmung mit den experimentellen Beobachtungen wurde gefunden, insbesondere wenn der Effekt des Fokusvolumens des Laserfeldes berücksichtigt wird. Die Anwendbarkeit des Zwei-Zentren-Modells auf größere Moleküle, N2 und O2, wird ebenfalls getestet. Es wird beobachtet, dass dies für N2 (symmetrisches HOMO) funktioniert, für O2 (asymmetrisches HOMO) jedoch nicht. / The ionization of some diatomic molecules, H2, N2, and O2, exposed to intense laser fields has been studied by comparing various molecular tunneling–ionization models with each other and with the numerical solution of the time-dependent Schrödinger equation (TDSE). The internuclear-distance dependent ionization yields over a wide range of laser peak intensities are investigated and the validity of the modified atomic and molecular tunneling models is examined. It is found that those models that depend on the quasi-static approximation, where ionization is independent on the oscillation frequency of the applied laser field, are useful for laser-induced ionization processes in only a very small region of the frequency and intensity domain of laser fields, i.e. in the tunneling regime. The models that include a frequency dependent factor are in a good agreement with the accurate TDSE calculations in both the multiphoton and the tunneling ionization regimes. Furthermore, the deviation from Franck-Condon-like distribution is also clarified. A small effect on the revival time of the vibrational wavepacket of hydrogen molecular ion, due to this deviation, has been found. Consideration of the bond-softening effect leads to a decrease in the revival time with increasing laser-peak intensity. The anisotropy of H2 as a function of laser intensity in linear and circular polarized fields using molecular tunneling model (MO-ADK) are also studied and a good agreement with the experimental observations, especially if the focal volume of the laser field is considered, has been obtained. The applicability of the two-center model for larger molecules, N2 and O2, is tested. It is found that it works with N2 (symmetric HOMO) but fails in O2 (ansymmetric HOMO).

Page generated in 0.1097 seconds