• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High harmonic generation in crystals assisted by local field enhancement in nanostructures / Génération d’harmoniques d’ordre élevé dans des cristaux assistée par exaltation locale du champ dans des nanostructures

Franz, Dominik 22 May 2018 (has links)
Le but de cette thèse est d’étudier le processus de la génération d’harmoniques d’ordre élevé (HHG, de l’anglais high-order harmonic generation) dans des solides et la possibilité d’augmenter l’efficacité de la génération en exploitant l’exaltation locale du champ incident dans des nanostructures. La HHG dans les gaz est connue depuis plusieurs décennies et a été étudiée en détails, par contre la HHG dans les solides a été démontrée pour la première fois en 2011. Différents processus comme les oscillations interbandes et intrabandes y jouent un rôle fondamental. Le processus exact est toujours en cours d’investigation et est discuté dans la communauté. Dans ce manuscrit, nous étudions la génération d’harmoniques dans différents cristaux, comme ZnO, CaCO₃ et CdWO₄. Nous confirmons que la HHG dépend de la longueur d’onde génératrice et de l’orientation cristalline. Outre les cristaux 3D nous étudions la HHG dans des matériaux 2D comme le graphène. Grâce à sa grande mobilité électronique et sa structure de bande spécifique la HHG dans graphène est plus efficaces que dans des cristaux 3D.Typiquement des intensités de 10¹² TW/cm² ou plus sont nécessaires pour susciter la HHG. Ces intensités élevées sont généralement atteintes par des méthodes comme l’amplification par dérive de fréquence qui génère des impulsions femtosecondes à des énergies µJ ou mJ. Grâce aux progrès récents des techniques de nanofabrication, il est possible d’exalter un champ électrique laser de plusieurs ordres de grandeurs dans des nanostructures. Alors que la HHG dans les gaz assistée par la plasmonique a été démontrée comme n’étant pas réalisable, des travaux récents démontrent l’amplification de la HHG dans des solides. Dans ce travail, nous étudions l’amplification de la HHG dans différentes configurations. D’abord, nous analysons différents types de nanostructures, à savoir des bow ties, des nano-trous, des réseaux et des résonateurs. Nous comparons ces structures suivant plusieurs critères tels que le volume d’exaltation et l’exaltation crête. Différentes longueurs d’onde et cristaux sont utilisés. Une large amplification de plusieurs ordres de grandeur est démontrée pour la troisième harmonique. En plus, nous discutons l’endommagement des nanostructures causé par l’irradiation laser. Des nanostructures semiconductrices confinant la lumière par guidage sub-longueur d’onde ont plusieurs avantages par rapport aux nanostructures métalliques. Des nanocones semiconducteurs, par exemple, présentent un grand volume d’amplification, supérieur de plusieurs ordres de grandeur à ce qui a été démontré récemment, et évitent la fusion observée dans des nanostructures métalliques. Nous présentons plusieurs itérations de l’expérience avec des nanocones de ZnO en améliorant le système de détection et la géométrie des nanocones entre chaque étape. Nous utilisons différents lasers et différentes géométries de nanocones. Nous avons observé les harmoniques d’un laser à 3.1 µm dans des nanocones de ZnO jusqu’à l’ordre 15. L’amplification de plusieurs ordres de grandeur d’harmoniques perturbatives et non perturbatives, générées à partir des impulsions d’un oscillateur nanojoule à une cadence MHz et une longueur d’onde de 2.1 µm, est démontrée pour la première fois jusqu’à H9. Le facteur d’amplification dépend de l’éclairement du faisceau pompe. Nous étudions également la forte amplification de la luminescence et proposons des méthodes pour séparer sa contribution de la contribution cohérente. En outre, nous démontrons plusieurs applications de la HHG dans les solides. Premièrement, nous proposons une nouvelle méthode pour déduire la distribution spatiale du champ électrique dans des nanostructures en analysant les dommages induits par laser. Deuxièmement, nous utilisons l’émission du nanocone, qui est cohérente spatialement, pour imager des objets avec une résolution à l’échelle nanométrique. Enfin, nous générons des harmoniques portant un moment orbital angulaire contrôlé. / The aim of this dissertation is to study the process of high-order harmonic generation (HHG) in solids and the possibility to amplify solid HHG by exploiting local field enhancements in nanostructures. While HHG in gases has been known for several decades and has been extensively studied, HHG in solids was first reported in 2011. Different processes such as interband and intraband oscillations were identified to play an important role in solid HHG. However, the process is still under investigation and debated in the community. Here, we study the generation of high harmonics in different crystals, such as ZnO, CaCO₃ and CdWO₄. We confirm that HHG depends on the driving wavelengths and on crystalline orientation. Beside 3D bulk crystals, we investigate HHG in 2D materials such as graphene. Due to its high electron mobility and its special band structure HHG in graphene is more efficient than in bulk crystals. Typically, intensities of 10¹² TW/cm² or more are needed to trigger HHG. The high intensity is reached by employing schemes like chirped pulse amplification which generates femtosecond pulses with µJ- or mJ-energies. Thanks to recent advances in nanofabrication techniques, nanostructures can enhance a laser electric field by several orders of magnitude. While plasmonically enhanced HHG in gases was shown not to be feasible, recent works reported on the amplification of HHG in solids. In this work, we explore the amplification of crystal HHG under various configurations. We first study different types of plasmonic nanostructures, namely bow ties, nanoholes, gratings and resonators. We compare them with respect to different parameters such as enhancement volume and peak enhancement. Different driving wavelengths and crystals are used. Strong amplification by several orders of magnitude is demonstrated for the third harmonic. Furthermore, we discuss radiation-induced damage of plasmonic nanostructures. Semiconductor nanostructures which confine light by subwavelength waveguiding have several advantages with respect to metallic nanostructures. Semiconductor nanocones for example exhibit a large amplification volume, several orders of magnitudes larger than previously reported and avoid melting observed in metallic nanostructures. We carry out several iterations of experiments with ZnO nanocones where the detection system and the nanocone geometry are improved in each cycle. We use different driving lasers and different optimized nanocone geometries. HHG in ZnO nanocones up to 15th order from a 3.1 µm driving laser is demonstrated. Amplification by several orders of magnitude of both perturbative and non-perturbative harmonics from nanojoule-oscillator pulses at MHz repetition rate and 2.1 µm wavelength is demonstrated, for the first time up to H9. The amplification factor depends on the pump intensity. We also explore the strong amplification of luminescence and propose ways to disentangle its contribution from the coherent one. Furthermore, we explore several applications of crystal HHG. First, we propose a new way to deduce the electric field spatial distribution in nanostructures by analyzing the radiation-induced damage. Secondly, we use the spatially coherent emission from the nanocone to image nanoscale objects with nanometer scale resolution. In addition, we generate solid harmonics that carry an orbital angular momentum.
2

Dynamiques ultrarapides de molécules chirales en phase gazeuse / Ultrafast dynamics of chiral molecules in gas phase

Comby, Antoine 14 November 2019 (has links)
La chiralité est une propriété géométrique caractérisant les objets qui ne sont pas superposables à leur image dans un miroir. Nos mains en sont un exemple emblématique, puisqu’elles existent sous deux formes différentes droite et gauche. Si la chiralité s'observe à toutes les échelles de l'univers, elle joue un rôle particulièrement important en chimie. Une molécule chirale et son image miroir peuvent réagir différemment avec leur environnement et être thérapeutiques ou toxiques. Ces effets ont évidemment d'immenses répercussions sur le règne animal et végétal. Il apparaît alors clairement qu'il est essentiel d’étudier précisément les dynamiques des réactions chimiques chirales.Dans cette thèse, nous avons étudié les dynamiques ultrarapides de molécules chirales par des sources lasers de durée femtosecondes).($10^{-15}$ s). La chiralité moléculaire étant généralement difficile à détecter, nous avons ici utilisé une technique récente, le dichroïsme circulaire de photoélectrons (PECD) qui permet de générer un signal chiral très important. Nous avons ainsi observé des dynamiques moléculaires ultrarapides jusqu'à l'échelle attoseconde ($10^{-18}$ s), et mis en avant des dynamiques de relaxation et d'ionisation encore jamais observées.Parallèlement à ces études résolues en temps, nous avons développé plusieurs expériences employant une nouvelle source laser Yb fibrée à haute cadence et grande puissance moyenne. Nous avons développé une nouvelle méthode, par extension du PECD, qui nous a permis de mesurer la compositions d'échantillons chiraux rapidement avec une grande précision. Enfin, nous avons développé une ligne de lumière XUV ultrabrève de très haute brillance ($sim 2$ mW). Cette source, couplée à un détecteur de photoélectrons et photoions en coïncidence, servira à étudier les mécanismes de reconnaissance chirale. / Chirality is a geometric property that characterizes objects that cannot be superposed on their mirror image. Our hands are an emblematic example of this, since they exist in two different forms, right and left. While chirality is observed at all scales in the universe, it plays a particularly important role in chemistry. A chiral molecule and its mirror image can react differently with their environment and be therapeutic or toxic. These effects obviously have immense repercussions on the animal and plant kingdom. It then becomes clear that it is essential to study precisely the dynamics of chiral chemical reactions.In this thesis, we studied the ultrafast dynamics of chiral molecules by laser sources of femtosecond duration ($10^{-15}$ s). Molecular chirality is generally difficult to detect, so we have used a recent technique, circular photoelectron dichroism (PECD), to generate a very important chiral signal. We have thus observed ultrafast molecular dynamics at the attosecond scale ($10^{-18}$ s), and highlighted relaxation and ionization dynamics never observed before.In parallel to these time-resolved studies, we have developed several experiments using a new high repetition rate, high mean power Yb fiber laser. We have developed a new method, by extending the PECD, that has allowed us to measure the composition of chiral samples quickly and accurately. Finally, we have developed an ultra-short XUV beamline with very high brightness ($sim 2$ mW). This source, coupled with a photoelectron and photoion coincidence detector, will be used to study chiral recognition mechanisms.
3

Propagation non-linéaire d'impulsions ultracourtes<br />dans les fibres optiques de nouvelle génération

Kibler, Bertrand 28 June 2007 (has links) (PDF)
Les fibres à cristaux photoniques (PCF) et autres fibres fortement non-linéaires conventionnelles (HNLF) représentent une nouvelle catégorie de guides d'ondes optiques qui possèdent des caractéristiques de dispersion et de non-linéarité inédites. Elles permettent, en effet, d'accroître fortement les effets non-linéaires avec des paramètres de dispersion multiples. De nombreux travaux récents ont déjà exploité ces propriétés pour la génération de spectres à très large bande au moyen de la génération de supercontinuum. L'étude de tels élargissements spectraux, en particulier dans les PCF, nécessite alors une modélisation précise de la propagation des impulsions. L'extension des modèles existants basés sur l'équation non-linéaire d'enveloppe de Schrödinger a été réalisée pour inclure des effets tels que de la dépendance en fréquence de l'aire effective du mode guidé et la génération de troisième harmonique. Les conséquences de tels effets sont décrites ainsi que de nouvelles perspectives pour la génération de supercontinuum. L'autre aspect attrayant de cette nouvelle génération de fibres optiques, en particulier concernant les HNLF, est leur utilisation dans l'important développement actuel des sources fibrées femtosecondes, proche de la longueur d'onde des télécommunications à 1550 nm. Dans ce cadre, deux systèmes expérimentaux ont été mis en place, permettant respectivement d'obtenir par compression non-linéaire des impulsions sub-30 fs et de générer des impulsions paraboliques de manière passive. Ces dispositifs sont basés sur l'utilisation et la gestion de très courtes longueurs de fibres commerciales de type HNLF, menant alors à des dispositifs ultra-compacts.
4

Relativistic Plasmonics for Ultra-Short Radiation Sources / Plasmonique relativiste pour sources de rayonnement ultra-brèves

Cantono, Giada 27 October 2017 (has links)
La plasmonique étudie le couplage entre le rayonnement électromagnétique et les oscillations collectives des électrons dans un matériel. Les plasmons de surface (SPs), notamment, ont la capacité de concentrer le champ électromagnétique sur des distances micrométriques, ce qui les rend intéressants pour le développement des dispositifs photoniques les plus novateurs. 'Etendre l'excitation de SPs au régime de champs élevés, où les électrons oscillent à des vitesses relativistes, ouvre des perspectives stimulantes pour la manipulation de la lumière laser ultra-intense et le développement de sources de rayonnement énergétiques et à courte durée. En fait, l'excitation de modes résonnants du plasma est l'une des stratégies possibles pour transférer efficacement l'énergie d'une impulsion laser ultra-puissante à une cible solide, cela étant parmi les défis actuels dans la physique de l’interaction laser-matière à haute intensité. Dans le cadre de ces deux sujets, ce travail de thèse démontre la possibilité d'exciter de façon résonnante des plasmons de surface avec des impulsions laser ultra-intenses. Elle étudie comment ces ondes peuvent à la fois accélérer de paquets d'électrons relativistes le long de la surface de la cible mais aussi augmenter la génération d'harmoniques d'ordre élevé de la fréquence laser. Ces deux processus ont été caractérisés avec de nombreuses expériences et simulations numériques. En utilisant un schéma d’interaction standard de la plasmonique classique, les SPs sont excités sur des cibles dont la surface présente une modulation périodique régulière à l'échelle micrométrique (cibles réseau). Dans ce cas, les propriétés de l'émission d'électrons tout comme celles des harmoniques permettent d’envisager leur utilisation dans des application pratiques. En réussissant à dépasser les principaux problèmes conceptuels et techniques qui jusqu'au présent avaient empêché l'application d'effets plasmoniques dans le régime de champs élevés, ces résultats apportent un intérêt nouveau à l'exploration de la Plasmonique Relativiste. / Plasmonics studies how the electromagnetic radiation couples with the collective oscillations of the electrons within a medium. Surface plasmons (SPs), in particular, have a well-established role in the development of forefront photonic devices, as they allow for strong enhancement of the local EM field over sub-micrometric dimensions. Promoting the SP excitation to the high-field regime, where the electrons quiver at relativistic velocities, would open stimulating perspectives for the both the manipulation of ultra-intense laser light and the development of energetic, short radiation sources. Indeed, the excitation of resonant plasma modes is a possible strategy to efficiently deliver the energy of a high-power laser to a solid target, this being among the current challenges in the physics of highly-intense laser-matter interaction. Gathering these topics, this thesis demonstrates the opportunity of resonant surface plasmon excitation at ultra-high laser intensities by studying how such waves accelerate bunches of relativistic electrons along the target surface and how they enhance the generation of high-order harmonics of the laser frequency. Both these processes have been investigated with numerous experiments and extensive numerical simulations. Adopting a standard configuration from classical plasmonics, SPs are excited on solid, wavelength-scale grating targets. In their presence, both electron and harmonic emissions exhibit remarkable features that support the conception of practical applications. Putting aside some major technical and conceptual issues discouraging the applicability of plasmonic effects in the high-field regime, these results are expected to mark new promises to the exploration of Relativistic Plasmonics.

Page generated in 0.1095 seconds