Spelling suggestions: "subject:"géodésibles"" "subject:"géodésie""
1 |
Sur quelques aspects riemanniens des structures de contact en dimension troisMassot, Patrick 08 December 2008 (has links) (PDF)
Cette thèse aborde l'étude de quelques propriétés riemanniennes des structures de contact en dimension trois et de leurs relations avec la topologie de ces structures. Dans la première partie on décrit diverses notions de courbure de champs de plans sur des variétés riemanniennes de dimension trois en comparant plusieurs approches préexistantes mais souvent mal connues. Dans la deuxième partie on présente les techniques topologiques d'étude des structures de contact en dimension trois. Enfin la troisième partie, qui rassemble l'essentiel des résultats nouveaux de cette thèse, est une étude des structures de contact géodésibles en dimension trois à l'aide des outils présentés dans la deuxième partie.
|
2 |
Pièges dans la théorie des feuilletages : exemples et contre-exemplesRechtman, Ana 06 February 2009 (has links) (PDF)
Dans ce travail, nous nous intéressons à deux questions. La première est de savoir si les champs de vecteurs non singuliers et géodésibles sur une variété fermée de dimension trois ont des orbites périodiques. La seconde, étudie les relations entre les feuilletages moyennables et les feuilletages dont toutes les feuilles sont Folner. L'idée commune dans ces deux problèmes est l'utilisation de pièges: un outil qui nous permet de changer un feuilletage à l'intérieur d'une carte feuilletée.<br /> <br /> Dans le premier chapitre nous abordons la première question. On dit qu'un champ de vecteurs non singulier est géodésible s'il existe une métrique riemannienne sur la variété ambiante pour laquelle toutes les orbites sont des géodésiques. Soit X un tel champ de vecteurs sur une variété fermée de dimension trois. Supposons que la variété est difféomorphe à la sphère ou son deuxième groupe d'homotopie est non trivial. Pour ces variétés, on montre que si X est analytique réel ou s'il préserve une forme volume, il possède une orbite périodique. <br /><br />Le deuxième chapitre est dédié à la seconde question. En 1983, R. Brooks avait annoncé qu'un feuilletage dont presque toutes les feuilles sont Folner est moyennable. A l'aide d'un piège, on va construire un contre-exemple à cette affirmation, c'est-à-dire un feuilletage non moyennable dont toutes les feuilles sont Folner. <br />Nous cherchons ensuite des conditions suffisantes sur le feuilletage pour que l'énoncé de R. Brooks soit valable. Comme suggéré par V. A. Kaimanovich, une possibilité est supposer que le feuilletage soit minimal. On montre que cette hypothèse est suffisante en utilisant un théorème de D. Cass que décrit les feuilles minimales.
|
Page generated in 0.0332 seconds