• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception, dimensionnement et fonctionnement d'une pompe à chaleur géothermique à assistance solaire pour les communautés nordiques du Nunavik

Maranghi, Florian 22 November 2022 (has links)
Le Nunavik compte 14 communautés autochtones isolées dépendant massivement de la combustion du diésel pour générer leur électricité et répondre aux besoins en chauffage de leurs habitations et de leurs bâtiments publics. Le présent mémoire évalue la capacité des pompes à chaleur géothermique à assistance solaire à réduire la consommation de diésel associée au chauffage, en milieu nordique, au sein des réseaux autonomes. Pour ce faire, une configuration de ce système incluant une assistance solaire photovoltaïque a été proposée afin de répondre aux besoins en chauffage d'un logement situé dans la communauté de Whapmagoostui-Kuujjuarapik, au Nunavik. Un modèle numérique du système de chauffage a été développé sous TRNSYS et les simulations ont permis de connaître l'évolution de ses performances pendant dix années d'exploitation, pour une configuration particulière incluant un échangeur géothermique d'une longueur totale de 260 m et des panneaux photovoltaïques d'une puissance installée de 9 kW. Le fonctionnement du système, les flux d'énergie et la température du fluide dans les différents composants ont également été détaillés. Une étude sensibilité a ensuite permis de montrer l'influence de cinq paramètres de conception sur les performances globales du système au bout de dix années d'exploitation. Les conceptions dotées d'une assistance solaire permettent de réaliser des économies de diésel de 48 à 69% au bout de dix années d'exploitation. En revanche, une analyse économique a révélé que ces systèmes sont très coûteux en raison des batteries et des panneaux photovoltaïques, et qu'ils nécessitent un horizon d'au moins 50 ans et des conditions économiques favorables pour devenir rentables. Enfin, une modification de la méthode de dimensionnement de l'ASHRAE a été proposée. Elle permet de prédire la longueur requise d'échangeurs géothermiques avec une précision de ±31% pour l'ensemble des systèmes simulés, pour une durée d'exploitation de dix ans. / Nunavik has 14 isolated indigenous communities that heavily rely on diesel fuel to generate electricity and meet the heating needs of their homes and public buildings. This thesis evaluates the ability of solar-assisted ground-coupled heat pumps to reduce diesel consumption for heating purposes in a northern environment within autonomous networks. For this purpose, a configuration including a solar-assisted photovoltaic system was proposed to meet the heating needs of a dwelling in the community of Whapmagoostui-Kuujjuarapik, in Nunavik. A numerical model of the heating system was developed in TRNSYS, and the simulations were carried out to know the evolution of its performances during a ten-year operation, for a particular configuration including a ground heat exchanger of a total length of 260 m and photovoltaic panels of an installed capacity of 9 kW. The operation of the system, the energy flows, and the temperature of the fluid in the different components were also evaluated. A sensitivity study then showed the influence of five design parameters on the overall performance of the system after ten years of operation. Designs with solar assistance achieved diesel savings of 48 to 69 percent after ten years of operation. On the other hand, an economic analysis revealed that these systems are very expensive due to the batteries and photovoltaic panels and require a time horizon of at least 50 years and favorable economic conditions to become cost-effective. Finally, a modification to the ASHRAE sizing method was proposed. It predicts the required length of ground heat exchangers with an accuracy of ±31% for all simulated systems, for a ten-year operating life.
2

Thermo-mechanical behaviour of geothermal structures : numerical modelling and recommendations / Comportement thermo-mécanique de structures géothermiques : modélisations numériques et recommandations

Rammal, Dina 12 December 2017 (has links)
Les structures géothermiques agissent comme éléments échangeurs de chaleur en plus de leur rôle majeur en tant que structures porteuses. De ce fait, ils sont soumis à des sollicitations thermiques en plus des charges mécaniques. Cependant, leurs méthodes de dimensionnement ne sont pas encore clairement définies. Ce travail est divisé en deux parties principales qui couvrent le dimensionnement thermique et mécanique des pieux géothermiques et des parois moulées. En ce qui concerne les performances thermiques des structures géothermiques, deux stratégies sont introduites qui sont capables d'évaluer les énergies conductives et advectives échangées admissibles. Ils permettent de distinguer les différentes formes d'énergies échangées et montrent comment elles peuvent varier en cas de chargement thermique cyclique. Des modèles numériques couplés thermo-hydraulique bidimensionnels et tridimensionnels ont été réalisés et la performance thermique des structures géothermiques a été évaluée en fonction des deux approches présentées. En ce qui concerne le dimensionnement mécanique, ce travail couvre les problèmes liés au choix de la sollicitation thermique que le concepteur doit considérer pour la conception mécanique des structures géothermiques telles que le nombre de cycles, l'amplitude thermique cyclique et l'influence de l'ordre de chargement thermique. Ce travail traite ces problèmes dans le but de faciliter la conception des structures géothermiques. Des recommandations sont données pour la conception mécanique des pieux géothermiques et des parois moulées basées sur les résultats obtenus à partir des analyses numériques thermo-mécanique. / Geothermal structures act as heat exchanger elements in addition to their major role as bearing structures. Thus, they are subjected to thermal solicitations as well as to mechanical loading. However, their design methods are not clearly defined yet. This work is divided into two main parts that cover the thermal and mechanical design of thermo-active piles and diaphragm walls. Regarding the thermal performance of geothermal structures, two strategies are introduced that are capable to evaluate the allowable exchanged conductive and advective energies. They help to distinguish between different forms of exchanged energies and show how they may vary under cyclic thermal loading. Two and three dimensional hydro-thermal numerical models have been conducted and the thermal performance of geothermal structures has been evaluated based on the two presented approaches. Regarding the mechanical design, this work covers the issues related to the choice of the thermal solicitation that the designer has to consider for the mechanical design of geothermal structures such as the number of cycles, cyclic thermal amplitude, and influence of the thermal loading order. This work deals with these issues with the aim to facilitate the design of geothermal structures. Recommendations are given for the mechanical design of both thermo-active piles and diaphragm walls based on the results obtained from the thermo-mechanical numerical analyses.
3

Maximizing power output of heat engines through design optimization : Geothermal power plants and novel exhaust heat recovery systems

Chagnon-Lessard, Noémie 13 March 2020 (has links)
Le design de machines thermiques menant à une puissance maximale dépend souvent des températures de la source chaude et de la source froide. C’est pourquoi dégager des lignes directrices à partir des designs optimaux de ces machines selon diverses températures d’opération peut faciliter leur conception. Une telle étude est proposée par cette thèse pour deux types de systèmes thermiques. En premier lieu, le cycle de Rankine organique (ORC) est un cycle thermodynamique de puissance utilisé entre autres dans les centrales géothermiques exploitant des réservoirs à basse température. Depuis quelques années, ce type de centrales suscite un vif intérêt à travers le monde, étant un des modes de production de puissance parmi les plus respectueux de l’environnement. Il s’agit de pomper un géofluide du sol pour transférer sa chaleur à un fluide de travail qui opère en cycle fermé, et de le réinjecter ensuite dans le bassin géologique. Les chercheurs tentent actuellement de mieux caractériser le potentiel géothermique de divers environnements géologiques. Le sous-sol du Québec est relativement froid, alors des études essaient de déterminer s’il serait possible d’y exploiter de manière rentable des centrales géothermiques. Une autre question de recherche importante est de savoir, pour un contexte donné, quel est le design optimal d’une centrale géothermique et quelle est la puissance que l’on peut espérer produire. Pour répondre à cette question, les cycles de Rankine organiques de base (de type souscritique ou transcritique) sont dans un premier temps simulés et optimisés pour des températures du géofluide de 80 à 180°C et pour des températures de condensation du fluide de travail de 0.1 à 50°C. Trente-six (36) fluides pures sont investigués pour toutes les combinaisons de températures. Par la suite, des cycles de Rankine organiques plus avancés sont aussi investigués (ajout d’une tour de refroidissement, d’un système de récupération, et d’une contrainte sur la température de réinjection du géofluide). Les ORCs avec deux pressions de chauffage souscritique et transcritique sont aussi simulés et optimisés. Les optimisations sont faites pour 20 fluides de travail selon la même plage de température du géofluide et selon des températures du thermomètre mouillé de l’air ambient de 10 à 32°C. En second lieu, le cycle de Brayton inversé (IBC) est un cycle thermodynamique qui pourrait être utilisé comme système de récupération de la chaleur perdue dans les gaz d’échappement de moteurs. Il s’agit d’un cycle ouvert comprenant dans sa configuration de base une turbine à gaz, un échangeur de chaleur et un compresseur. Il existe une configuration où l’eau qui se condense lors du refroidissement des gaz est évacuée avant le compresseur pour réduire le débit massique et améliorer le rendement global du système. Le Powertrain and Vehicle Research Centre (PVRC) de l’University of Bath s’est intéressé à savoir si certaines variantes de l’IBC découlant de cette configuration seraient des options viables. Ces variantes ont mené à la création de trois nouveaux cycles thermodynamiques couplant l’IBC avec (i) une turbine à vapeur, (ii) un cycle de réfrigération, et (iii) ces deux ajouts. En comptant les deux cycles déjà existants décrits au paragraphe précédent, cinq configurations de l’IBC sont simulées et optimisées pour des températures de gaz d’échappement de 600 à 1200 K et températures de la source froide de 280 à 340 K. La finalité de cette thèse est d’offrir un outil aidant les ingénieurs à concevoir les systèmes introduits précédemment (ORC et IBC) de sorte qu’ils aient un travail spécifique net maximisé. Sous forme d’un ensemble de diagrammes, cet outil peut ainsi être utilisé pour une large plage de température de la source chaude (géofluide ou gaz d’échappement) et de température de la source froide. / Heat engines design leading to maximum power output often depends on the hot source temperature and the cold source temperature. This is why drawing guidelines from optimal designs of these machines according to diverse operating temperatures may facilitate their conception. Such a study is proposed by this thesis for two types of heat engines. In the first instance, the Organic Rankine Cycle (ORC) is a power thermodynamic cycle used among others in geothermal power plants exploiting low-temperature reservoirs. This type of power plants raises keen interest around the world for being one the most environmentally friendly power production modes. In these power plants, a geofluid is pumped from the ground to transfer its heat to a working fluid operating in a closed cycle. The geofluid is then reinjected in the geological basin. Researchers are currently attempting to characterize in a better way the geothermal potential of diverse geological environments. Considering the province of Québec’s relatively cold underground, studies try to determinate whether it is possible to profitably operate geothermal power plants. Another important research question is to determine, for a given context, the optimal geothermal power plant design, and the amount of power that could be generated. To answer this question, Organic Rankine Cycles (subcritical and transcritical) are first simulated and optimized for geofluid temperatures from 80 to 180°C and for condensing temperatures of the working fluid from 0.1 to 50°C. Thirty-six (36) pure fluids are investigated for each temperature combination. Next, cycles models are improved by adding a cooling tower, a recuperative system and a constraint on the minimum reinjection temperature. ORCs with dual-pressure heater are simulated and optimized as well. Optimization runs are performed considering 20 working fluids for the same range of geofluid temperature and for ambient air wet bulb temperature from 10 to 32°C. In the second instance, the Inverted Brayton Cycle (IBC) is a thermodynamic cycle that could be used as a waste heat recovery system for engines exhaust gases. This is an open cycle which includes a gas turbine, a heat exchanger and a compressor as a basic layout. There is a configuration where the water condensed during the cooling of the gases is evacuated upstream of the compressor in order to reduce the mass flow rate and improve the system global efficiency. The Powertrain and Vehicle Research Centre (PVRC) of the University of Bath is interested in finding out whether particular IBC variants arising from this configuration could be viable options. These variants led to the creation of three novel thermodynamic cycles that couple the IBC with (i) a steam turbine, (ii) a refrigeration cycle, and (iii) both additions. Including both already existing cycles described in the preceding paragraph, five IBC layouts are simulated and optimized for exhaust gases temperatures from 600 to 1200 K and for heat sink temperatures from 280 to 340 K. The purpose of this thesis is to offer a tool that help engineers designing the systems previously introduced (ORC and IBC), so that they produced a maximized specific work output. As a set of charts, this tool can be used for a large range of hot source temperature (geofluid or exhaust gases) and of heat sink temperature.
4

Les eaux géothermiques du gisement Khankala ˸ formation, utilisation, prévisions / Geothermal waters of the Khankala deposit ˸ formation, use, forecasts

Farkhutdinov, Anvar 23 December 2016 (has links)
Récemment, une attention considérable a été accordée dans le monde à l'utilisation des sources d'énergie renouvelables. Parmi celles-ci, les eaux géothermales sont d'une grande importance en raison de la sécurité écologique et de l'efficacité économique de leur utilisation. La Russie possède un fort potentiel de ressources confirmées en eau géothermale, mais aujourd'hui, seule une faible proportion est utilisée. L'un des territoires les plus prometteurs pour les eaux géothermales est la République Tchétchène, qui se trouve à la 3ème place parmi les régions russes pour les réserves opérationnelles approuvées de gisements d'eaux géothermales, parmi lesquelles la plus importante est le gisement de Khankala.Le développement durable des ressources en eaux géothermales exige une approche intégrée. L'analyse géostatistique et l'estimation, ainsi que la modélisation mathématique, peuvent jouer un rôle important dans la résolution des problèmes d'exploitation des eaux géothermales. La carte structurale estimée de la couche la plus productive (la couche XIII) et une carte 3-D de la distribution de la température dans le gisement de Khankala ont été créées en utilisant le krigeage universel. Les résultats ont montré l'importance du facteur structuraltectonique et du mouvement des eaux souterraines dans la formation du régime de température du territoire. La modélisation de l'exploitation des gisements géothermiques de Khankala a permis de prévoirl’évolution de la température, de fournir des recommandations sur l'emplacement des puits d'injection et la distance entre les impacts à la couche productive, et d'explorer d'autres scénarios d'exploitation comme l'utilisation périodique de couches par doublets.Le développement de l'utilisation des eaux géothermales présente des avantages incontestables: respect de l'environnement et renouvelabilité. Afin de développer ce domaine en République Tchétchène, le soutien de l'Etat est nécessaire. L'absence d'un cadre législatif adapté et de systèmes spéciaux d'assurance pose des problèmes. L'utilisation des eaux géothermales des quatorze gisements explorés en République Tchétchène peut constituer une contribution significative à la production locale d'énergie et à la stabilité économique de la région, tout en apportant des avantages environnementaux par le remplacement partiel des combustibles traditionnels.Le travail présenté ici est une contribution au projet de station géothermique de Khankala qui a été lancé avec succès au début de 2016. La station géothermique de Khankala représente une nouvelle étape dans l'utilisation des eaux géothermales dans le Caucase du Nord car il s’agit du seul exemple russe de station géothermique avec une boucle fermée de puits de production et d'injection (“doublet”) et 100% de réinjection du fluide utilisé dans le réservoir. / Recently, considerable attention in the world is given to the use of renewable energy sources. Among them geothermal waters are of great importance due to ecological safety and economic efficiency of their use. Russia has confirmed high potential of geothermal water resources, but today only a small proportion is used. One of the most promising areas for geothermal waters is the Chechen Republic, which is at the 3rd place among the Russian regions for approved operational reserves of geothermal waters deposits, the largest of which is the Khankala deposit.Achievement of the sustainability in geothermal waters resource development requires an integrated approach and an important role in solving the problems of exploitation of thermal waters is played by geostatistical analysis and estimation, as well as mathematical modelling. The adjusted structural map of the most productive layer (layer XIII) and a 3-D map of temperature distribution within the Khankala deposit were created using universal kriging. Results approved the importance of the structural-tectonic factor and movement of groundwater in the formation of the temperature regime of the territory. Modelling of the Khankala geothermal waters deposit exploitation allowed to make prognosis of temperature changes, to provide recommendations on injection-production wells location and distance between down holes and to explore possible further exploitation scenarios such as periodic use of different layers by doublet systems.The development of geothermal waters use has undoubted advantages – environmental friendliness and renewability. In order to develop this domain in the Chechen Republic the state support is needed. Issues are the lack of a special legislative framework and special insurance systems. Use of geothermal waters of the 14 explored deposits in Chechen Republic can be a significant contribution to local energy production and economic stability of the region while bringing the environmental benefits of traditional fuels partial replacement.The present work was a contribution to the Khankala geothermal station project, which was successfully launched in the beginning of the 2016. The Khankala geothermal station represents a new stage in use of geothermal waters in the Northern Caucasus as it is the only Russian example of geothermal station with closed loop of production and injection wells (“doublet”) with 100% reinjection of used fluid back into reservoir.
5

Etude de l'impact des conditions géologiques et climatiques sur l'efficacité énergétique des systèmes géothermiques de surface / Study of geological and climatic conditions impact on energy efficiency of surface geothermal systems

Cuny, Mathias 29 September 2017 (has links)
Les systèmes géothermiques de surface extraient l’énergie du sol via un fluide caloporteur circulant dans un échangeur pour une profondeur ne dépassant pas 200 m. Deux typologies d’échangeurs sont généralement utilisées : les systèmes avec échangeurs verticaux, principalement affectés par les conditions géologiques ; et les échangeurs horizontaux, plus proches de la surface du sol, impactés essentiellement par les conditions climatiques. Dans le sol, les échanges thermiques sont majoritairement des transferts de chaleur par conduction. Ainsi, les propriétés thermo-physiques du sol influencent la quantité d’énergie extraite par les échangeurs. Afin de quantifier les propriétés thermo-physiques d’un sol sous l’influence des conditions géologiques et climatiques, deux dispositifs expérimentaux sont élaborés, conçus, instrumentés et validés au sein de notre laboratoire. Les résultats expérimentaux enrichissent les connaissances scientifiques sur le comportement hydrique d’un sol soumis à des événements pluvieux et l’impact de la contrainte verticale sur les propriétés thermo-physiques d’un sol. De plus, une étude numérique, à partir d’une modélisation 2D par éléments finis d’un échangeur airsol, évalue les performances énergétiques de ce dernier en fonction de différentes humidifications du sol et différents scénarios de pluie. Les résultats numériques révèlent ainsi l’intérêt d’utiliser un sol d’enrobage très humide pour accroître significativement les performances énergétiques d’un échangeur air-sol. / Surface geothermal systems extract energy from the ground via a fluid circulating in an exchanger at a depth not exceeding 200 m. Two typologies of exchangers are generally used: systems with vertical exchangers, mainly affected by geological conditions; and horizontal exchangers, closer to the surface of ground, impacted mainly by weather conditions. Thermal exchanges in the soil are mainly conduction heat transfers. Thus, thermo-physical properties of soil influence, mostly, energy extracted by exchangers. In order to quantify influence of geological and meteorological conditions on thermo-physical properties of soil, two experimental devices are developed, designed, instrumented and validated. The experimental results provide more appropriate scientific knowledge on hydric behavior of a soil subjected to rain events and influence of compactness on thermal properties of soil. In addition, one numerical study, based on a finite element 2D modeling of an earth-air heat exchanger, evaluates their energy performance under different soil moisture conditions and rain scenarios thus revealing the utility of water to significantly improve its performance.
6

Geothermal system optimization in mining environments

Raymond, Jasmin 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / Les ressources particulières à l’environnement minier, tel que l’eau inondant des galeries et des stériles exothermiques, permettent de diminuer les coûts d’installation des systèmes de pompes à chaleur géothermique. Les particularités de l’environnement minier posent toutefois un défi de taille lors de la conception d’un système puisque l’approche utilisée doit considérer, par exemple, la conductivité hydraulique accrue par les excavations ou la génération de chaleur provenant de l’oxydation de minéraux. L’objectif de ce projet de recherche est de simuler l’opération de systèmes géothermiques issus de sites miniers dans le but de démontrer les économies d’énergie potentielles et faciliter l’installation des systèmes. Des approches numériques sont développées avec le programme HydroGeoSphere pour application à des études de cas réalisées aux Mines Gaspé à Murdochville et à la Halde Sud de la Mine Doyon en Abitibi. Un système de pompes à chaleur d’aquifère aux Mines Gaspé est optimisé avec un modèle numérique où sont superposés des éléments 1D et 3D pour représenter les excavations. Les simulations démontrent que le système peut être opéré à partir d’anciens puits de ventilation afin d’éviter d’effectuer des forages. Les stériles de la Halde Sud sont d’abord caractérisés avec un test de réponse thermique conventionnel, analysé avec l’équation de la ligne-source et le principe de superposition considérant les variations du taux d’injection de chaleur. Une méthode numérique est aussi développée pour analyser l’essai influencé par l’hétérogénéité des matériaux et le gradient géothermique prononcé. Le mort terrain et le roc sous la halde sont caractérisés à l’aide d’un nouveau test de réponse thermique effectué avec des câbles chauffants. Des simulations numériques reproduisent ensuite la distribution de température lors d’essais types, laquelle devient rapidement homogène durant la période de restitution thermique ce qui permet d’analyser la température dans le forage sans connaître la position du capteur. L’opération d’un système de pompes à chaleur couplées au sol aménagé sous la Halde Sud est finalement simulée. L’optimisation des charges de chauffage indique que l’échangeur de chaleur situé sous les stériles peut fournir plus d’énergie thermique qu’un échangeur situé dans un environnent conventionnel, réduisant la longueur de forage à l’installation. / Resources associated to mining environments, such as mine water and exothermic waste rock, allow a reduction of installation costs of ground source heat pump systems. Compared to other environments, caution is required when designing systems in mining environments because of enhanced hydraulic conductivity created by mine voids or heat generation due to oxidation of minerals. The objective of this study is to simulate the operation of geothermal systems on mine sites to demonstrate energy savings and promote installation. Numerical modeling approaches are developed with the program HydroGeoSphere applied for case studies conducted at the Gaspé Mines in Murdochville and at the South Dump of the Doyon Mine in Abitibi. A groundwater heat pump system at the Gaspé Mines is optimized with a numerical model, where 1D and 3D elements are superposed to adequately represent the mine voids. The simulations show that the system can be operated using former mining shafts to avoid drilling boreholes. Waste rock of the South Dump is initially characterized with a conventional thermal response test analyzed with the lines-source equation and the superposition principle accounting for variations of heat injection rates. A numerical method is also developed to analyze the test that was affected by the heterogeneity of materials and the strong geothermal gradient. The overburden and the host rock below the dump are characterized with a novel thermal response test using heating cables. Numerical simulations then reproduce the temperature distribution during typical tests, which homogenizes rapidly during the recovery period allowing the analysis of temperature inside the borehole without knowing the position of the sensor. The operation of a ground-coupled heat pump system installed under the South Dump is finally simulated. The optimization of heating loads indicates that the heat exchanger located beneath the waste pile can provide more thermal energy than an exchanger located in a conventional environment, reducing bore length required for a given system.
7

Life cycle assessment of enhanced geothermal systems : from specific case studies to generic parameterized models / Analyse du cycle de vie des systèmes géothermiques stimulés : de l’étude de cas à la caractérisation de la filière

Lacirignola, Martino 26 April 2017 (has links)
Cette recherche vise à étudier les impacts environnementaux d'une technologie émergente de production d’électricité basée sur une source renouvelable, les systèmes géothermiques stimulés (EGS), par l’analyse de leur cycle de vie (ACV).Après avoir analysé plusieurs études de cas, nous avons développé un modèle ACV paramétré capable de caractériser les performances environnementales de la filière EGS. Nos résultats montrent que les émissions de gaz à effet de serre des EGS sur leur cycle de vie sont bien inférieures à celles des centrales utilisant des combustibles fossiles.Dans un deuxième temps, nous avons mis au point un cadre méthodologique pour appliquer l'analyse de sensibilité globale (GSA) à l’ACV des technologies émergentes comme les EGS, prenant en compte les incertitudes élevées liées à leur caractère innovant. Nous avons appliqué notre nouvelle approche GSA pour développer un modèle ACV simplifié, à destination des décideurs, permettant une estimation rapide des impacts des EGS à partir de seulement cinq paramètres clefs: capacité installée, profondeur de forage, nombre de puits, débit géothermal et durée de vie.L'approche méthodologique développée dans cette thèse est applicable à d'autres technologies et ouvre de larges perspectives de recherche dans le domaine de l'évaluation environnementale. / This thesis investigates the environmental impacts of an emerging renewable energy technology, the enhanced geothermal systems (EGS), using a life cycle assessment (LCA) approach.Following the analysis of several EGS case studies, we developed a parameterized LCA model able to provide a global overview of the life cycle impacts of the EGS technology. The greenhouse gas emissions of EGS are found comparable with other renewable energy systems and far better than those of power plants based on fossil fuels.In a second stage, we developed a methodological framework for the application of global sensitivity analysis (GSA) to the LCA of emerging technologies like the EGS, taking into account the high uncertainties related to their description. We applied our new GSA approach to generate a simplified LCA model, aimed at decision makers, allowing a rapid estimation of the life cycle impacts of EGS from only five key parameters: installed capacity, drilling depth, number of wells, flow rate and lifetime.The methodological approach developed in this thesis is applicable to other technologies and opens large research perspectives in the field of environmental assessment.
8

Low-Temperature Geothermal Potential of the Gaspé Mines, Murdochville

Raymond, Jasmin 12 April 2018 (has links)
Évaluer le potentiel géothermique d’une mine inondée est une tâche complexe qui nécessite la réalisation d’un test hydraulique et la modélisation de l’écoulement de l’eau souterraine à travers un réservoir non conventionnel. Cette tâche peut être efficacement complétée en réutilisant les anciennes infrastructures minières. Lors de cette étude, un puits de ventilation débouchant dans les galeries souterraines a été converti en ouvrage de captage d’eau profond. L’ancien puits de ventilation 1100 des Mines Gaspé à Murdochville au Canada a été utilisé pour effectuer un essai de pompage durant 3 semaines à un débit moyen de 0.062 m3/s. L’objectif principal des travaux encourus était d’évaluer le potentiel géothermique du site minier. Lors de l’essai, moins de 3,65 m de rabattement ont été observés et la température moyenne de l’eau pompée a été de 6,7 °C. Le comportement de la nappe souterraine durant l’essai a été reproduit à l’aide d’un modèle d’éléments finis tridimensionnel simulant l’écoulement de l’eau à travers les galeries. Les prédictions du modèle ainsi qu’un bilan énergétique simplifié suggèrent que le taux d’extraction d’énergie durable est atteint à un débit de pompage de 0.049 m3/s, ce qui indique un potentiel géothermique de 765 kW. Cette énergie pourrait être extraite à l’aide de pompes à chaleur géothermiques afin de chauffer les bâtiments du parc industriel de Murdochville. / Assessing the low-temperature geothermal potential of a flooded mine site is a complex task involving hydraulic testing and modelling of an unusual man-made reservoir. It can be achieved efficiently taking advantages of the former mine infrastructures such as mining shaft that provided here a deep well directly connected to the mine workings. The former mining shaft P1100 of the flooded Gaspé Mines near Murdochville, Canada, was used to perform a pumping test during a study with the objective of assessing the geothermal potential of the mine site. Water was pumped during 3 weeks at a rate averaging 0.062 m3/s with a mean recovery temperature equal to 6.7 °C and less than 3.65 m drawdown was observed. The hydraulic response of the pumping test was reproduced with a threedimensional finite element model that simulates groundwater flow through the mine workings. Model predictions and a simplified energy balance calculation suggested that the sustainable energy extraction rate is attained at a pumping rate of 0.049 m3/s which yield a geothermal potential of 765 kW. This energy could be extracted with geothermal heat pumps used for space heating at Murdochville industrial park.
9

Mesure et modélisation des températures dans les massifs rocheux. Application au projet de tunnel profond Maurienne-Ambin.

Goy, Laurent 17 December 1996 (has links) (PDF)
Pour les projets de tunnels profonds; la prévision des températures naturelles au rocher est essentielle pour le choix des méthodes de perforation, de ventilation et de refroidissement. Une méthode numérique de prévision des températures a été développée à cet effet, à partir d'un logiciel 2D d'éléments finis. Les températures sont calculées dans un plan vertical du massif, à partir de l'équation fondamentale de la chaleur en conduction pure. La modélisation nécessite la connaissance de cinq paramètres de base que sont: le profil topographique, les températures de surface, la structure géologique, la conductivité anisotrope des roches et le flux géothermique profond. Une méthode de correction du profil topographique permet de prendre en compte la troisième dimension. Différents tests sont effectués sur un profil de montagne idéalisé, pour évaluer le poids des différents paramètres dans la modélisation. Le modèle est appliqué ensuite au massif comprenant le tunnel Maurienne-Ambin, dans le cadre du projet de ligne à grande vitesse entre Lyon et Turin. Une sonde de mesure des températures a été mise au point et utilisée dans les sondages de reconnaissance pour ce projet de tunnel profond (55km sous un recouvrement maximal de 2500m). Les forages nous permettent de déterminer la structure géologique, les valeurs de conductivité des roches et le flux géothermique de la région en appliquant la "méthode des intervalles". La température maximale calculée le long du tunnel est de 48,5°C. La confrontation entre les mesures de température dans les forages et la modélisation permet de valider les résultats, sauf dans les premières centaines de mètres du massif, où les circulations d'eau, qui ne sont pas prises en compte par notre modèle, modifient la distribution des températures.

Page generated in 0.0998 seconds