• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 77
  • 74
  • 30
  • 20
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 548
  • 87
  • 53
  • 52
  • 37
  • 36
  • 34
  • 32
  • 31
  • 31
  • 30
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Sleep-related activity and recovery of function in the somatosensory cortex during early development

Marcano-Reik, Amy Jo 01 December 2011 (has links)
The corpus callosum, the major interhemispheric fiber tract, mediates communication between homotopic regions within the primary somatosensory cortex (S1). Recently, in 1- to 6-day-old neonatal rats, brief bursts of high-frequency, oscillatory activity - called spindle-bursts (SBs) - were described in S1 following sensory feedback from endogenously generated sleep-related myoclonic twitch movements and exogenously generated peripheral stimulation. To determine whether interhemispheric communication via the corpus callosum modulates the expression of SBs during this early period of development and contributes to cortical organization and plasticity, we investigated the endogenous (spontaneous) expression and exogenous (evoked) activity of SBs in neonatal rats with intact or surgically severed callosal fibers (i.e., callosotomy; CCx). We used Ag/AgCl cortical surface electrodes in the S1-forelimb region of the cortex to measure neurophysiological and behavioral activity in both intact and CCx subjects across the sleep-wake cycle during the first two postnatal weeks of development. Our results demonstrate, for the first time, that the corpus callosum modulates spontaneous and evoked activity between homotopic regions in S1 as early as 24-hours after birth. In addition, CCx disinhibits cortical activity, nearly doubling the rate of spontaneous SBs through, but not after, postnatal day 6 (P6). CCx also significantly and reliably disrupts the evoked response to peripheral stimulation of the forepaw. To examine the role of sleep-related twitches and their associated sensory feedback (SBs in S1) - modulated by the corpus callosum - in cortical development and plasticity, we performed CCx or sham surgeries at P1, P6, or P8, and tested subjects the day of surgery or over the ensuing week of recovery. Regardless of age, CCx immediately disrupted SBs evoked by forepaw stimulation. The P1 and P6 CCx groups exhibited full recovery after one week; in contrast, the P8 group did not exhibit recovery of function, thus indicating an abrupt decrease in cortical plasticity between P6 and P8. Together, these results provide the first evidence that sleep-related myoclonic twitches and the associated sensory feedback in S1 (SBs) contribute to cortical development, plasticity, and recovery of function after interhemispheric communication is disrupted by callosotomy. CCx-induced disinhibition of spontaneous SBs is a transient phenomenon whose disappearance coincides with the onset of increased intrinsic connectivity, establishment of excitatory-inhibitory balance, and diminished plasticity in S1. Our findings indicate that CCx-induced disinhibition of spontaneous twitch-related SBs and disruption of evoked response to peripheral stimulation serve as a bioassay of somatosensory cortical plasticity during the early postnatal period.
322

Conditions for the emergence of corticostriatal synaptic plasticity / Conditions pour l'apparition de plasticité synaptique corticostriatale

Valtcheva, Silvana 26 September 2016 (has links)
D'après le postulat de Hebb, les réseaux neuronaux adaptent leur connectivité sous l'influence des activités pré- et post-synaptiques. La " spike-timing-dependent plasticity " (STDP) est une règle d'apprentissage synaptique de type Hebbien, qui repose sur la structure temporelle précise des patrons d'activités appariées de part et d'autre de la synapse. La plasticité cortico-striatale serait le substrat biologique de l'apprentissage procédural effectué par les ganglions de la base. Les neurones de sortie du striatum agissent comme des détecteurs de coïncidence des activités corticales et thalamiques. La STDP cortico-striatale pourrait donc jouer un rôle crucial dans les processus d'encodage de l'apprentissage et la mémoire procédurale. Nous avons exploré les conditions d'émergence et d'expression de la STDP cortico-striatale. / According to Hebbian theory, neural networks refine their connectivity by patterned firing of action potentials in pre- and postsynaptic neurons. Spike-timing-dependent plasticity (STDP) is a synaptic Hebbian learning rule relying on the precise order and the millisecond timing of the paired activities on either side of the synapse. Temporal coding via STDP may be essential for the role of the striatum in learning of motor sequences in which sensory and motor events are associated in a precise time sequence. Corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Striatal output neurons act as detectors of distributed patterns of cortical and thalamic activity. Thus, corticostriatal STDP should play a major role in information processing in the basal ganglia, which is based on a precise time-coding process. Here, we explored the conditions required for the emergence of corticostriatal STDP.
323

A Unified Radiometric Assay System for the Gaba-Glutamate Regulating Enzymes

Dinwoodie, Robert C. 01 May 1978 (has links)
The purpose of this paper was to develop a single assay system for the enzymes which regulate GABA and glutamate concentrations in brain and nerve tissue. Since all the enzymes produce L-glutamate, their activities were measured by coupling them to L-glutamate decarboxylase. Enzymatic activity was determined by measuring the release of co2 from radioactive substrates. The glutamate decarboxylase was obtained from a commercial acetone powder by simplifying existing procedures. The glutamate decarboxylase produced was of sufficient purity to be used in the coupled assays, which were checked with commercial preparations of each enzyme, where available, and with crude brain homogenates. All of the assays were shown to be linear with respect to both time and enzyme concentration, thus assuring the feasibility of the technique.
324

Effects of Mammalian Target of Rapamycin Inhibition on Circuitry Changes in the Dentate Gyrus of Mice after Focal Brain Injury

Butler, Corwin R. 01 January 2016 (has links)
Post-traumatic epilepsy is a common outcome of severe traumatic brain injury (TBI). The development of spontaneous seizures after traumatic brain injury generally follows a latent period of little to no symptoms. The series of events occurring in this latent period are not well understood. Additionally, there is no current treatment to prevent the development of epilepsy after TBI (i.e. antiepileptogenics). One cell signaling pathway activated in models of TBI and in models of epilepsy is the mammalian target of rapamycin (mTOR). mTOR activity is sustained for weeks after the initial insult in models of TBI, and the inhibition of mTOR using rapamycin has shown promising pre-clinical outcomes in rodent models. This makes rapamycin an ideal therapeutic to test various outcomes associated with epileptogenesis after TBI. The results from this study suggest that rapamycin treatment after controlled cortical impact reduces aberrant axonal sprouting of ipsilateral dentate granule cells, prevents increased neurogenesis in the subgranular zone, and differentially alters phasic and tonic inhibition in dentate granule cells. However, rapamycin treatment did not prevent all forms of axon sprouting in the dentate gyrus or cell loss in selected regions of the hippocampus. Collectively these results support a role of mTOR activity in both excitatory and inhibitory plasticity in the mouse dentate gyrus after TBI.
325

ALTERATIONS IN GABAERGIC NTS NEURON FUNCTION IN ASSOCIATION WITH TLE AND SUDEP

Derera, Isabel Diane 01 January 2018 (has links)
Epilepsy is a neurological disorder that is characterized by aberrant electrical activity in the brain resulting in at least two unprovoked seizures over a period longer than 24 hours. Approximately 60% of individuals with epilepsy are diagnosed with temporal lobe epilepsy (TLE) and about one third of those individuals do not respond well to anti-seizure medications. This places those individuals at high risk for sudden unexpected death in epilepsy (SUDEP). SUDEP is defined as when an individual with epilepsy, who is otherwise healthy, dies suddenly and unexpectedly for unknown reasons. SUDEP is one of the leading causes of death in individuals with acquired epilepsies (i.e. not due to genetic mutations), such as TLE. Previous studies utilizing genetic models of epilepsy have suggested that circuitry within the vagal complex of the brainstem may play a role in SUDEP risk. Gamma-aminobutyric acid (GABA) neurons of the nucleus tractus solitarius (NTS) within the vagal complex receive, filter, and modulate cardiorespiratory information from the vagus nerve. GABAergic NTS neurons then project to cardiac vagal motor neurons, eventually effecting parasympathetic output to the periphery. In this study, a mouse model of TLE was used to assess the effect of epileptogenesis on GABAergic NTS neuron function and determine if functional alterations in these neurons impact SUDEP risk. It was discovered that mice with TLE (i.e. TLE mice) have significantly increased mortality rates compared to control animals, suggesting that SUDEP occurs in this model. Using whole cell electrophysiology synaptic and intrinsic properties of GABAergic NTS neurons were investigated in TLE and control mice. Results suggest that during epileptogenesis, GABAergic NTS neurons become hyperexcitable, potentially due to a reduction in A-type potassium channel current and increased excitatory synaptic input. Increases in hyperexcitability have been shown to be associated with an increased risk of spreading depolarization and action potential inactivation leading to neuronal quiescence. This may lead to a decreased inhibition of parasympathetic tone, causing cardiorespiratory collapse and SUDEP in TLE.
326

Pyridazinediones and amino acid receptors theoretical studies, design, synthesis and evaluation of novel analogues

Greenwood, Jeremy R. (Jeremy Robert), 1971- January 1999 (has links)
Title from title screen. Interactive three dimensional molecular data and multiple colour images. Text presented in Hypertext Markup Language (.htm); images in standard formats (.jpg, .gif); molecules presented mostly as Cambridge Protein Data Bank format (.pdb); some molecules presented in alternative X.Mol cartesian co-ordinates format (.xyz); search facility in PERL script. Includes bibliographical references. Text, numeric and representational data System requirements: for text, any standard web browser on any platform, Netscape 2.x or higher, Internet Explorer 3.x or higher; for molecular structures, viewer such as Rasmol or preferably MDL's Chemscape Chime; for search facility , an appropriately configured web server. Links to all required software for browsing on various platforms are included in the software directory in the thesis. Mode of access: World Wide Web.
327

Modulation de la migration neuronale par les neurotransmetteurs GABA et glutamate : aspects fondamentaux et implications pathologiques

Manent, Jean-Bernard 19 June 2006 (has links) (PDF)
Les progrès récents des techniques d'imagerie cérébrale ont permis d'identifier les défauts de migration neuronale comme cause majeure de retards mentaux, d'épilepsies et de nombreux syndromes neurologiques. La connaissance des mécanismes intervenant dans la modulation de la migration neuronale est donc capitale afin de prévenir de telles anomalies du développement cérébral foetal, dont le coût socioéconomique est élevé. Le travail réalisé au cours de cette thèse s'inscrit dans le cadre de cette thématique.<br />De nombreuses études ont identifié les neurotransmetteurs comme des molécules porteuses d'informations à un niveau plus large que celui de la seule transmission synaptique. En effet, avant même la formation de synapses, les neurotransmetteurs sont présents au sein du tissu cérébral embryonnaire et exercent des actions variées, influençant les étapes de genèse, migration, différentiation et de mort neuronale. Nous avons évalué les rôles joués par les neurotransmetteurs GABA et glutamate au cours de la migration neuronale, ainsi que les conséquences de la perturbation de leurs actions durant la construction du cerveau foetal.<br />Afin d'étudier la migration neuronale, nous avons mis au point des préparations originales permettant la visualisation directe de neurones fluorescents en migration. Grâce à elles, nous avons démontré l'existence d'une modulation de la migration neuronale par le GABA et glutamate, libérés selon un mode de sécrétion « non vésiculaire » et agissant par l'intermédiaire de récepteurs spécifiques. Nous avons montré que les mécanismes modulant la migration sont caractéristiques du type neuronal et du mode migratoire considéré. Ainsi, la migration radiale des futurs neurones glutamatergiques est modulée majoritairement par l'activation de récepteurs GABAA, alors que la migration tangentielle des futurs interneurones GABAergiques est modulée par l'activation de récepteurs glutamatergiques de type AMPA. Ces résultats suggèrent également l'existence d'une communication précoce entre neurones glutamatergiques et interneurones, pouvant contribuer à la construction cérébrale. Par la suite, nous avons évalué le risque de survenue de malformations cérébrales foetales, suite à l'administration de médicaments anti-épileptiques, qui potentialisent l'action du GABA, limitent l'action du glutamate et modulent l'activité des canaux ioniques. Nous avons observé une incidence accrue de micro-dysplasies cortico-hippocampiques, à rapprocher de défauts de migration, suite à l'administration chez la rate gestante de valproate et de vigabatrin à des doses compatibles avec celles employées pour le traitement de la femme enceinte épileptique.<br />Ces résultats soulignent le rôle central joué par les neurotransmetteurs GABA et glutamate, en tant que signaux informatifs majeurs du cerveau en développement. De plus, ils suggèrent le besoin d'évaluer l'impact de l'exposition à des composés pharmacologiques interférant avec les actions de ces neurotransmetteurs lors de la maturation cérébrale.
328

Spinal Acetylcholine Release : Mechanisms and Receptor Involvement

Kommalage, Mahinda January 2005 (has links)
<p>Impulses coming from peripheries are modified in the spinal cord and transmitted to the brain. Several neurotransmitters have been involved in the processing of impulses in the spinal dorsal horn. Acetylcholine (ACh) is one of many neurotransmitters involved in the regulation of nociception in the spinal cord. In this study we investigated the role of nicotinic, muscarinic, serotonergic and GABA receptors in the regulation of spinal ACh release since these receptors are reported to be involved in spinal nociceptive processes.</p><p>Different receptor ligands were infused intraspinally via microdialysis and the spinal ACh release was measured by on-line HPLC. Receptor-ligand binding studies were performed with spinal cord homogenates as well as receptors expressed in cells.</p><p>In the first study, we found that nicotine and some of the nicotinic antagonists used increased ACh release suggesting that spinal ACh release is regulated by different nAChRs. Nicotine and nicotinic agonists may act on different types of receptors with different affinity to produce the observed net effect of increased ACh release. We propose the possibility of an involvement of three different nicotinic receptor subtypes in the regulation of spinal ACh release. </p><p>The effect of epibatidine, which is regarded as a nicotinic agonist, on muscarinic receptors was investigated in the second study. We propose that epibatidine, in μM concentrations, is a partial muscarinic receptor agonist that may interact with spinal muscarinic receptors to increase ACh release. The dual action on both nAChRs and mAChRs may explain the potent analgesic effect observed after intra-spinal epibatidine administration.</p><p>In the third study, we investigated the role of serotonin receptor involvement in ACh release control. The results suggest that only 5-HT<sub>1A</sub> and 5-HT<sub>2A</sub> receptors are involved in spinal ACh release. Considering current knowledge, the most probable location of 5-HT<sub>2A</sub> receptors is on cholinergic neurones. On activation of the 5-HT<sub>2A</sub> receptors the cellular excitability of cholinergic neurones is increased which results in an increasing ACh release. The 5-HT<sub>1A</sub> receptors might be located on cell bodies of GABA neurones which inhibit the firing rate of the GABA neurones when activated by serotonin. </p><p>In the fourth study, we investigated the GABA receptor involvement in the regulation in spinal ACh release. We found that GABA<sub>A</sub> receptors are tonically inhibiting spinal ACh release. The results further suggest that GABA<sub>B</sub> receptors also are involved in the regulation of spinal ACh release. However, unlike GABA<sub>A</sub> antagonists, GABA<sub>B</sub> antagonists do not increase ACh release. This suggests that GABA<sub>B</sub> receptors are not tonically regulating the spinal ACh release. </p>
329

Die neuronale Kontrolle der Speicheldrüse von Periplaneta americana / The neuronal control of the salivary glands of Periplaneta americana

Rotte, Cathleen January 2009 (has links)
Die acinösen Speicheldrüsen der Schabe Periplaneta americana sind reich durch serotonerge, dopaminerge und GABAerge Fasern innerviert. Die biogenen Amine Serotonin (5-HT) und Dopamin (DA) induzieren die Sekretion eines NaCl-haltigen Primärspeichels. Die physiologische Rolle der GABAergen Innervation des Drüsenkomplexes war bislang unbekannt. Weiterhin wurde vermutet, dass Tyramin (TA) und Octopamin (OA) an der Speichelbildung beteiligt sind. Mittels intrazellulärer Ableitungen von sekretorischen Acinuszellen mit und ohne Stimulierung des Speicheldrüsennervs (SDN) sollte daher die Wirkung von GABA, TA und OA im Speicheldrüsenkomplex untersucht werden. Intrazelluläre Ableitungen aus Acinuszellen zeigten, dass sowohl DA als auch 5 HT biphasische Änderungen des Membranpotentials induzierten. Diese bestanden aus einer initialen Hyperpolarisation und einer darauf folgenden transienten Depolarisation. Stimulierung des SDN mittels einer Saugelektrode verursachte ebenfalls biphasische Änderungen des Membranpotentials der Acinuszellen, die mit den DA- bzw. 5-HT-induzierten Änderungen kinetisch identisch waren. Dieses Ergebnis zeigte, dass die elektrische Stimulierung des SDN im Nerv-Speicheldrüsenpräparat eine verlässliche Methode zur Untersuchung der Wirkungen von Neuromodulatoren auf die dopaminerge und/oder sertotonerge Neurotransmission ist. Die Hyperpolarisation der DA-induzierten Potentialänderungen wurde durch eine intrazelluläre Ca2+-Freisetzung und die Öffnung basolateral lokalisierter Ca2+-gesteuerter K+-Kanäle verur-sacht. Die DA- und 5-HT-induzierte Depolarisation hing kritisch von der Aktivität eines basolateral lokalisierten Na+-K+-2Cl--Symporters ab. GABA, TA und OA potenzierten die elektrischen Antworten der Acinuszellen, wenn diese durch SDN-Stimulierung hervorgerufen wurden. Dabei war OA wirksamer als TA. Dieses Ergebnis zeigte, dass diese Substanzen als im Drüsenkomplex präsynaptisch und erregend als Neuromodulatoren wirken. Pharmakologische Untersuchungen ergaben, dass die erregende Wirkung von GABA durch einen G-Protein-gekoppelten GABAB-Rezeptor vermittelt wurde. Messungen der durch SDN-Stimulierung induzierten Flüssigkeits- und Proteinsekretionsraten zeigten, dass beide Parameter in Anwesenheit von GABA verstärkt waren. Dies ließ auf eine verstärkte serotonerge Neurotransmission schließen, da nur 5-HT die Bildung eines Protein-haltigen Speichels verursacht. Immuncytochemische Untersuchungen zeigten, dass die Drüsen tyraminerge und octopaminerge Innervation empfangen. Weiterhin wurde der erste charakterisierte TA-Rezeptor (PeaTYR1) der Schabe auf einem paarigen, lateral zur Drüse ziehenden Nerv markiert, der auch tyraminerge Fasern enthielt. Die vorliegende Arbeit trug zum Verständnis der komplexen Funktionsweise der Speicheldrüse der Schabe bei und erweiterte das lückenhafte Wissen über die neuronale Kontrolle exokriner Drüsen in Insekten. / The cockroach Periplaneta americana has acinar type salivary glands. The secretory acini consist of P-cells, responsible for electrolyte and water secretion and C-cells that secrete protein into the saliva. Salivation is controlled by the dopaminergic and GABAergic salivary neurons SN1 and SN2, and by several smaller serotonergic neurons. Dopamine (DA) and serotonin (5-HT) induce the secretion of a NaCl-rich saliva. The physiological role of the GABAergic innervation was unknown. Furthermore, the cellular actions of the biogenic amines DA and 5-HT were poorly understood. Based on studies on other insect salivary glands a role for octopamine (OA) and tyramine (TA) acting as neuromodulators was suggested. In this study, intracellular recordings of the basolateral membrane potential of acinar cells were performed to examine direct and modulating actions of the biogenic amines DA, 5-HT, OA, TA and of GABA. A nerve-gland preparation was developed and used to investigate the actions of neuromodulators, namely GABA, OA and TA. DA and 5-HT induced biphasic membrane potential changes, consisting of an initial hyperpolarization and a transient depolarization. The DA-induced hyperpolarization was mediated by intracellular Ca2+-release and subsequent opening of basolateral Ca2+-dependent K+-channels. The DA- and 5-HT-induced depolarization was dependent on the presence of extracellular Na+ and the activity of a basolateral Na+-K+-2Cl--cotransporter. Electrical stimulation of the salivary duct nerve (SDN) by means of a suction electrode induced membrane potential changes with the same kinetics as those induced by bath application of DA and 5-HT. These results suggested that electrical nerve stimulation is a adequate method to investigate presynaptic effects of neuromodulators. GABA, OA and TA affected neither the resting membrane potential of the acinar cells, nor the DA- or 5 HT- induced potential changes. When GABA was applied during SDN-stimulation, it enhanced the amplitudes of the membrane potential changes of the acinar cells as well as fluid- and protein secretion rates of the glands. Pharmacological experiments revealed that the excitatory action of GABA in the gland complex is mediated by a metabotropic GABA receptor (GABAB-type). OA and TA enhanced the membrane potential changes of the acinar cells when these were induced by SDN-stimulation, suggesting presynaptic excitatory roles for both amines in the gland complex. Immunocytochemistry revealed rich innervation of the salivary glands with octopamine- immunoreactive fibers that were also stained by the tyramine-antibody, and with tyramine-immunoreactive fibers lacking octopamine-immunoreactivity. Since the tyramine receptor PeaTYR1 is expressed in the salivary gland complex, its distribution was investigated by using a specific antibody. Immunoreactivity was detected in a paired nerve of unknown root. This nerve innervated only few acini lying in the periphery of the gland complex and contained tyraminergic fibers. This study extends our knowledge about the complex neuronal control and function of insect salivary glands.
330

Spinal Acetylcholine Release : Mechanisms and Receptor Involvement

Kommalage, Mahinda January 2005 (has links)
Impulses coming from peripheries are modified in the spinal cord and transmitted to the brain. Several neurotransmitters have been involved in the processing of impulses in the spinal dorsal horn. Acetylcholine (ACh) is one of many neurotransmitters involved in the regulation of nociception in the spinal cord. In this study we investigated the role of nicotinic, muscarinic, serotonergic and GABA receptors in the regulation of spinal ACh release since these receptors are reported to be involved in spinal nociceptive processes. Different receptor ligands were infused intraspinally via microdialysis and the spinal ACh release was measured by on-line HPLC. Receptor-ligand binding studies were performed with spinal cord homogenates as well as receptors expressed in cells. In the first study, we found that nicotine and some of the nicotinic antagonists used increased ACh release suggesting that spinal ACh release is regulated by different nAChRs. Nicotine and nicotinic agonists may act on different types of receptors with different affinity to produce the observed net effect of increased ACh release. We propose the possibility of an involvement of three different nicotinic receptor subtypes in the regulation of spinal ACh release. The effect of epibatidine, which is regarded as a nicotinic agonist, on muscarinic receptors was investigated in the second study. We propose that epibatidine, in μM concentrations, is a partial muscarinic receptor agonist that may interact with spinal muscarinic receptors to increase ACh release. The dual action on both nAChRs and mAChRs may explain the potent analgesic effect observed after intra-spinal epibatidine administration. In the third study, we investigated the role of serotonin receptor involvement in ACh release control. The results suggest that only 5-HT1A and 5-HT2A receptors are involved in spinal ACh release. Considering current knowledge, the most probable location of 5-HT2A receptors is on cholinergic neurones. On activation of the 5-HT2A receptors the cellular excitability of cholinergic neurones is increased which results in an increasing ACh release. The 5-HT1A receptors might be located on cell bodies of GABA neurones which inhibit the firing rate of the GABA neurones when activated by serotonin. In the fourth study, we investigated the GABA receptor involvement in the regulation in spinal ACh release. We found that GABAA receptors are tonically inhibiting spinal ACh release. The results further suggest that GABAB receptors also are involved in the regulation of spinal ACh release. However, unlike GABAA antagonists, GABAB antagonists do not increase ACh release. This suggests that GABAB receptors are not tonically regulating the spinal ACh release.

Page generated in 0.0329 seconds