Spelling suggestions: "subject:"brettanomyces graminis"" "subject:"actinomyces graminis""
11 |
Directed evolution of disease suppressive bacteria : the role of root lesions on take - all diseased wheatBarnett, Stephen J. January 1998 (has links)
Take - all disease ( caused by Gaeumannomyces graminis var tritici, Ggt ) can be suppressed by soil microorganisms after continuous monoculture of wheat ( take - all decline, TAD ). Fluorescent pseudomonads have been implicated in this suppression. Two strategies for controlling take - ail are the in situ development of disease suppressive soil, and / or the application of a biocontrol agent. However, TAD takes up to 10 years to develop after initially high levels of disease, and the performance of bacterial biocontrol agents has been inconsistent. It is not known what environmental factors select for disease antagonists. In this work the role of diseased root lesions in directing the evolution of a native pseudomonad community, and a model disease antagonist, Pseudomonas corrugate strain 2140 ( Pc2140 ) for increased disease suppression was investigated. This work shows that root lesions are a distinct niche, supporting increased populations of total aerobic bacteria ( TAB ), pseudomonads and Pc2140 ( compared to non - lesioned sections of diseased roots and healthy roots ). Lesions selected for fluorescent pseudomonads and pseudomonads which increase take - all severity. In. contrast, lesions selected for non - pseudomonads which decrease take - all, and healthy roots selected for non - fluorescent pseudomonads which decrease take - all. It was concluded that non - fluorescent pseudomonads and non - pseudomonads were important in reducing take - all, but not fluorescent pseudomonads. Pc2140 produced multiple variant phenotypes in vitro and on wheat roots which were altered in ( 1 ) their ability to inhibit pathogens in vitro and control take - all, and ( 2 ) GC - FAME and BIOLOG profiles to the extent that some variants were identified as different species. Different sets of phenotypes were produced in vitro and on roots. After 108 weeks culture of Pc2140 on root lesions and healthy wheat roots, variant colony types were generally slightly decreased in ability to reduce take - all, and reisolates with the wild type colony morphology were generally slightly increased in ability to reduce take - all compared to the ancestral Pc2140. This is the first report on the diversification of a pseudomonad biocontrol agent on roots, and has implications for the taxonomic identification and grouping of isolates based on phenotypic characteristics. / Thesis (Ph.D.)--Department of Crop Protection, 1998.
|
12 |
Mechanisms of biocontrol of Gaeumannomyces graminis var. tritici by Pseudomonas corrugata strain 2140 : genetic and biochemical aspects /Ross, Ian Lindsay. January 1996 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept. of Crop Protection, 1996. / Includes bibliographical references (leaves 207-220).
|
13 |
PCR-Based Test for Differentiating Varieties of <i>Gaeumannomyces graminis</i>, The Take-All PathogensRachdawong, Sansanalak 11 April 1999 (has links)
Take-all is the most devastating root disease of wheat worldwide. The causal agent is <I>Gaeumannomyces</I> <I>graminis</I> (Sacc.) Arx & Olivier. Based on morphological characteristics and host ranges, three varieties of <I>G</I>. <I>graminis</I> have been recognized. <I>G</I>. <I>graminis</I> var. <I>tritici</I> Walker (Ggt) is the major causal agent of take-all of wheat and barley and the most economically important take-all pathogen. <I>G</I>. <I>graminis</I> var. <I>avenae</I> (Turner) Dennis (Gga) attack oats and causes take-all patch of turf grasses while <I>G</I>. <I>graminis</I> var. <I>graminis</I> (Ggg) is pathogenic on turf grasses but is non-pathogenic on wheat. Conventional diagnosis of take-all pathogens is based on field symptoms such as blackened roots, stunted growth, and white-heads and morphological characteristics such as hyphopodia type, size of perithecia, asci, and ascospores. These procedures are time-consuming, laborious, and often inconclusive. The objective of this study was to develop a rapid, simple, and specific method for differentiation of <I>G</I>. <I>graminis</I> varieties using PCR and molecular-based technology. Exploitation of genes associated with pathogenicity of <I>G</I>. <I>graminis</I> as markers for the test was proposed. Metabolic activities of <I>G</I>. <I>graminis</I> associated with pathogenesis were investigated, namely, the abilities to produce avenacinase and to oxidize manganese. Avenacinase, an avenacin detoxifying enzyme, was associated with Gga pathogenicity for oats but this enzyme is not important in Ggt pathogenicity for wheat. Manganese oxidation was also correlated with Ggt virulence. In this study, avenacinase-like genes were discovered in Ggt and Ggg and manganese oxidation was confirmed for Ggt, Gga, and Ggg. All isolates of Ggt except isolate ATCC 28230 were manganese oxidizers. Ggg and Gga isolates could oxidize manganese but their precipitation patterns were not as intense or closely correlated with mycelial growth as for Ggt. Pathogenicity assays on oats for Ggt, Gga, and Ggg isolates confirmed that Ggt isolates could not cause disease on oats aside from occasional slight root damage. Root weight was reduced for oat seedlings inoculated with Gga isolates. Comparison of partial sequences of avenacinase-like genes from Ggt and Ggg showed strong homology to that of Gga (94.8% identity to Ggt and 94.6% identity to Ggg). However, the Ggt gene was more closely related to that of Ggg (99.2% identity) than to Gga. DNA restriction endonuclease polymorphisms of the genes supported DNA sequencing information and revealed that there were variations within the genes among Ggt, Gga, and Ggg. Variety-specific electrophoretic patterns were obtained when the genes were digested with <I>Hae</I>III. Ggt, Gga, and Ggg upstream (5') variety-specific primers and a downstream (3') universal primer were designed from the avenacinase and avenacinase-like DNA sequences. PCR amplification with Ggt-, Gga-, and Ggg-specific primers generated fragments of 870, 617, and 1,086 bp, respectively. Each 5'-specific primer showed high specificity for its own DNA template in mixed populations of DNA templates. The optimized PCR procedure was sensitive to DNA template concentration as low as 100 pg. Genomic DNA of sixteen Ggt isolates, seven Gga isolates, and five Ggg isolates were tested. Although all Ggt isolates were originally isolated from wheat, seven isolates produced Ggg-specific fragments. This result corresponded well with <I>Hae</I>III DNA polymorphisms, pathogenicity assay, and manganese oxidizing ability. All but one Gga isolates produced the variety-specific fragment. Ggt- and Gga- specific products were generated from Gga isolate RB-W. Although Ggg-specific fragments were produced from all Ggg isolates, non-specific products were also observed from isolates that were not from wheat origin suggesting some genetic variations due to host ranges. Additionally, no non-specific amplification was obtained from any closely related fungi such as <I>Gaeumannomyces</I> <I>cylindrosporus</I> or <I>Phialophora</I> spp. The test developed in this study is the first test capable of identification of Ggt, Gga, and Ggg in a single PCR tube with a basic PCR protocol. The test is rapid and specific. Interpretation of results is simple and conclusive based on differences in size of each variety-specific fragment. / Ph. D.
|
14 |
Take-all in Wheat: PCR Identification of the Pathogen and the Interactions Amongst Potential Biological Control AgentsGenowati, Indira 18 September 2001 (has links)
<i>Gaeumannomyces graminis var. triciti (Ggt)</i>, the causal agent of take-all in wheat, is difficult to detect accurately and rapidly due to its similarity to fungi in the Gaeumannomyces-Phialophora complex. My objectives are to detect the fungus in infested plants and soil, and to predict effective combinations of bacteria as biological control agents. Detection was based on avenacinase-based primers and polymerase chain reaction (PCR) conditions specified by earlier research. PCR conditions were modified to effect detection. The annealing temperature was lowered from 68 to 62°C for plant and soil extracts, and the concentration of Taq polymerase was doubled for soil extracts. The lowest detection limit for plant extraction was with plant grown on 4 g Ggt-infested millet seed per kg soil, and that for soil extraction was 16 <span style="font-family:Symbol">m</span>g of purified Ggt DNA per g soil. Chemical and cultural control methods are currently inadequate. Biological control using bacteria is an alternative. Combinations of several bacterial strains are expected to work better than a single strain, but they may be less effective if bacteria antagonize each other or compete for the same rhizosphere habitat. Antagonism of potential biological control agents were assessed using a Petri plate assay. To estimate possible habitat competition, nutritional profiles of the strains were evaluated using the BIOLOG system. I hypothesized that bacteria not antagonistic to each other and having low coefficients of nutritional similarity would make better biological control combinations. Six bacterial combinations gave better mean root weight in the greenhouse experiment but not in the field. / Master of Science
|
15 |
Resistance to take-all disease by Mn efficient wheat cultivars / Judith F. Pedler.Pedler, Judith F. (Judith Fleur) January 1994 (has links)
Includes bibliographical references. / xiv, 210 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1995
|
16 |
Resistance to take-all disease by Mn efficient wheat cultivarsPedler, Judith F. (Judith Fleur) January 1994 (has links) (PDF)
Includes bibliographical references.
|
17 |
Resistance in `Triticum aestivum` to infection by `Gaeumannomyces graminis` var `Tritici` / by L. PenrosePenrose, L (Lindsay) January 1985 (has links)
Bibliography: leaves 141-145 / vii, 145 leaves, [4] leaves of plates : ill. (4 col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Depts. of Plant Pathology and Agronomy, 1986
|
18 |
Einfluss von Pseudomonas fluorescens und Mykorrhiza auf Wachstum und Resistenz von Weizen bei Befall mit Gaeumannomyces graminis und Fusarium culmorum sowie unter Trockenstress /Behn, Oliver. January 2004 (has links) (PDF)
Freie Univ., Diss.--Berlin, 2005. / Zusfassung in engl. Sprache.
|
19 |
The development and utilization of assays to characterize populations of gaeumannomyces graminisThomas, Samantha Lynn 30 September 2004 (has links)
No description available.
|
20 |
Interactions between the Brassicaceae Brassica napus and Arabidopsis thaliana and the phytopathogenic fungus Verticillium longisporum / The Role of Volatile Organic CompoundsVlaic, Maria 03 July 2012 (has links)
Brassica napus ist eine der wichtigsten Pflanzen in der Landwirtschaft. Pathogene verursachen jährlich große Ertragsverluste. Im Rahmen dieser Arbeit wurden die Interaktionen zwischen der Nutzpflanze Brassica napus bzw. der Modellpflanze Arabidopsis thaliana und dem phytopathogenen Pilz Verticillium longisporum untersucht. Verticillium longisporum ist ein auf Brassica spezialisierter Pilz, der die sogenannte Verticillium-Welke verursacht. Er dringt in die Wurzeln der Pflanze ein und steigt durch die Leitgefäße in den Spross auf. Die Pflanze zeigt in Folge der Infektion vor allem einen stark verkürzten Spross, Chlorosen und eine Notreife.
Für die Experimente wurde Brassica napus und Arabidopsis thaliana mit Verticillium longisporum infiziert. Die Emissionen von Volatilen (volatile organic compounds (VOC)) der Pflanzen wurden sowohl ober- als auch unterirdisch bezüglich sich ändernder VOCs analysiert. Bei der Probennahme wurde darauf geachtet, die Pflanzen nicht zu verletzen und durch Messungen bedingten Stress zu minimieren. Auch während der Messungen der Wurzel-emissionen wurden die Pflanzen nicht aus ihrem Substrat entfernt, sondern innerhalb dessen gemessen.
Während sich das Duftspektrum der Wurzeln von Brassica napus nicht änderte, emittierten die Sprosse infizierter Brassica Pflanzen signifikant mehr Dimethyldisulfid, ß-Ionon und ß-Cyclocitral. Bei der Infektion von Arabidopsis thaliana mit Verticillium longisporum hingegen spielten diese VOCs keine Rolle. Im zweiten Teil der Arbeit wurde die Vermutung überprüft, dass sich im Infektionsverlauf ändernde VOCs als Abwehrmoleküle dienen könnten. Hierfür wurde ein Bioassay entwickelt und zwei weitere pathogene Pilze, Gaeumannomyces graminis var. triciti und Sclerotinia sclerotiorum, unterschiedlicher Spezialisierung einbezogen. Wir setzten sie Dimethyldisulfid und ß-Ionon in unterschiedlichen Konzentrationen aus. Sowohl Dimethyldisulfid als auch ß-Ionon zeigten nur eine geringe fungizide Wirkung, gemessen am Myzelwachstum, gegen den Brassica-Spezialisten Verticillium longisporum. Gaeumannomyces graminis var. triciti wurde bereits bei geringeren Konzentrationen gehemmt. Sclerotinia sclerotiorum reagierte nicht oder sogar positiv auf die VOCs. Die (Mikro-) Sklerotienbildung wurde nur bei Verticillium longisporum beeinflusst. ß-Ionon unterstützte diese Entwicklung signifikant.
|
Page generated in 0.0616 seconds