• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 18
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 100
  • 60
  • 13
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Aspectos da deformacao do aluminio em ensaios de tracao

QUADROS, NEY F. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:31:55Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:40Z (GMT). No. of bitstreams: 1 02238.pdf: 7874589 bytes, checksum: 2508ea5b8a12f7656ab705c285fb99b3 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
72

Medidas de tensões residuais por extensiometria em componentes usados no setor da mobilidade / Measurements of residual stresses with strain gages for components used in the mobility sector

CIONE, FRANCISCO C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:05:35Z (GMT). No. of bitstreams: 0 / Muitas especificações de engenharia, procedimentos de fabricação, inspeção e controle de qualidade já começam a exigir que a análise da tensão residual de determinado componente seja avaliada. Isto está se tornando tão corriqueiro quanto às exigências referentes às propriedades mecânicas. No país existem poucos laboratórios de pesquisa qualificados para execução destes ensaios e também é constatada uma preocupante falta de mão de obra qualificada. A relevância do estudo e pesquisas em tensões residuais, ressalta para o desenvolvimento científico, tecnológico e inovação nos processos de fabricação de componentes para a indústria. Novos ferramentais e instrumentações para a investigação de microestrutura dos materiais, disponíveis em laboratórios de pesquisas tanto em instituições governamentais como em instalações privativas necessitam de pesquisadores habilitados o que está associado à formação de pessoal especializado dedicado a medidas de tensões residuais, ao desenvolvimento de procedimentos experimentais e técnicas de preparação de amostras que envolvam extensometria. A tensão residual, em componentes metálicos e ligas, tem origem em decorrência de processos de fabricação (fundição, tratamento térmico, usinagem, conformação mecânica) pelo qual se obtém a conformação estrutural do componente desejado. Estudar a formação e arranjo dos campos de tensões residuais podem permitir, entre outros ganhos, a elaboração de simulações por modelagem matemática mais refinada. Assim pode-se inferir, com maior detalhamento o comportamento destes componentes somando ganhos na resiliência à fadiga, sobrevida, segurança e redução de custo operacional de equipamentos e máquinas. O uso de extensometria na investigação de tensões residuais em rodas na industria automotiva contribuirá para a formação de uma maior base de dados que permitirá obter softwares de simulação FEM, com melhor índice da relação com modelagem matemática com o componente físico real. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
73

Estimativa da vida sob fadiga de amplitude variavel de um componente mecanico

RICARDO, LUIZ C.H. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:55Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:37Z (GMT). No. of bitstreams: 1 06786.pdf: 7146263 bytes, checksum: 0ad9a0e558c3dc7c1847019c4d7753a1 (MD5) / Dissertacao [Mestrado] / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
74

The application of optical fibre Bragg grating sensors to an internal wind tunnel balance

Pieterse, Frederik Francois 04 June 2012 (has links)
D. Phil. / Conventional internal wind tunnel balances are designed and constructed to accommodate foil strain gauges which measure the deformation (strain) of the material. Foil strain gauge balances are known to be affected by electromagnetic interference and temperature. These balances are expensive and their manufacture is time consuming. With an increasing demand for higher accuracy, stiffness, increased resolution and temperature compensation, current balance designs are becoming inadequate. To overcome identified balance deficiencies a research programme in the application of optical Bragg gratings to wind tunnel balances was initiated. In this programme a new concept of using optical fibre Bragg grating sensors, with the advantage of using mechanical amplification to increase sensitivity, and the implementation of temperature compensation techniques was demonstrated on a simulated two component balance.
75

Monitoring of tool wear in turning operations using vibration measurements

Scheffer, Cornelius 21 December 2006 (has links)
This study investigates the use of vibration and strain measurements on machine tools in order to identify the propagating wear of the selected tools. Two case studies are considered, one of which was conducted in the plant of a South African piston manufacturer. The purpose of the ftrst case study was to investigate the feasibility of vibration monitoring to identify tool wear, before attempting to implement a monitoring system in the manufacturing plant. During this case study, data from a turning process was recorded using two accelerometers coupled to a PL202 real time FFT analyser. Features indicative of tool wear were extracted from the sensor signals, and then used as inputs to a Self-Organising Map (SOM). The SOM is a type of neural network based on unsupervised learning, and can be used to classify the input data into regions corresponding to new and worn tools. It was also shown that the SOM can also be used very efficiently with discrete variables. One of the main contributions of the second case study was the fact that a unique type of tool was investigated, namely a synthetic diamond tool specifically used for the manufacturing of aluminium pistons. Data from the manufacturing of pistons was recorded with two piezoelectric strain sensors and a single accelerometer, all coupled to a DSPT Siglab analyser. A large number of features indicative of tool wear were automatically extracted from different parts of the original signals. These included features from time and frequency domain data, time series model coefficients as features and features extracted from wavelet packet analysis. A correlation coefficient approach was used to auto-lJUltically select the best features indicative of the progressive wear of the diamond tools. The SOM was once again used to identify the tool state. Some of the advantages of using different map sizes on the SOM were also demonstrated. A near 100% correct classification of the tool wear data was obtained by training the SOM with two independent data sets, and testing it with a third independent data set. It was also shown that the monitoring strategy proposed in the second case study can be fully automated and can be implemented on-line if the manufacturer wishes to. Some of the contributions of this study are the use of the SOM for tool wear classification, and conclusions regarding the wear modes of the synthetic diamond tools. / Dissertation (M Eng (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
76

Optimum Design of Composite Wing Spar Subjected to Fatigue Loadings

Lazarin, Juan Reuben 01 June 2017 (has links)
Composites are now being incorporated into aircraft designs because of their high strength to weight ratio compared to traditional metal materials. Due to the complexity of the material, composite parts are presently being over designed to satisfy static and fatigue requirements. A greater understanding of composite fatigue behavior will allow for even greater weight savings leading to increased fuel economy. A critical part of an aircraft that is subjected to fatigue bending loads are its wings. The forces acting on the wings include its lift distribution, powerplant, and fuel which can be carried in the wing body. When in flight these forces repeatedly cause cyclic displacements which could ultimately lead to failure. It is important to design the wing spars which carry the bending loads, to be fatigue resistant so that damage or expensive inspections could be avoided. Wing models were be made from composite materials with a NACA 0016 airfoil shape, chord length of 9.25”, and a span of 15.25”. The C – channel spars were located at 22% and 72% of the chord. Strain gages on the wing model were used to measure strain at different locations. Static test were conducted on the specimens in order to validate a finite element analysis(FEA) model to be used for simulations. Overall, the strain measurements on the leading edge from two of the wings matched the model within 9% of the simulation results. Additional spar designs were then analyzed to determine the optimal one for static and fatigue bending loads. The wings were fatigue tested under displacement control at a test frequency. A model 8801 servo-hydraulic Instron machine and Wave Matrix software was used to fatigue the wings. After 100,000 cycles the test would be deemed a success and concluded.
77

The development of poly(vinylidene fluoride) piezoelectric sensors for measuring peel stresses in adhesive joints

Anderson, Gregory Lee 14 October 2005 (has links)
Although bond-normal stresses have been shown to be responsible for the failure of most laboratory adhesive joint geometries, the measurement of these stresses has been accomplished only through the use of very sophisticated optical techniques. In order to develop a more versatile measurement technique, poly(vinylidene fluoride) film was used to develop piezoelectric stress sensors. The sensitivities of the film to normal stresses in the three principal material directions of the orthotropic film were accurately measured using a charge amplifier and a storage oscilloscope. These measured sensitivities comprised the calibration constants of the film. In order to reduce the detrimental effect on bond strength caused by embedding the low surface energy film into adhesive bondlines, surface treatment methods were investigated using contact angle studies, XPS analysis and 1800 peel and tapered double cantilever beam adhesion specimens. An acid etch using a mixture of acetic, phosphoric and nitric acids was found to greatly improve the bond strengths to an epoxy adhesive without reducing the piezoelectric activity of the film. The bond-normal stresses in both the elastomeric butt joint and the single lap shear joint were measured using the developed stress sensors. Comparison of the measured stresses with calculated values obtained from closed-form analytical solutions and finite element analysis for the stresses was excellent. The piezoelectric sensors do have several important limitations. The piezoelectric activity of the film is lost at temperatures above 100°C (210°F). Also, the sensors are only sensitive to dynamic loads. Nonetheless, the sensors provide an accurate means of measuring peel stresses in many adhesive joints of practical interest. / Ph. D.
78

Floating head skin friction gage measurements in supersonic flows

Lattimer, Brian Y. 30 June 2009 (has links)
Two floating head skin friction gages have been designed and tested to directly measure the skin friction coefficient for the undefined flow in a SCRAM-jet engine. The skin friction gage designs contain a floating head that is supported by ball bearings which allow it to move in any horizontal direction and restrain it from any vertical motion. The shearing force caused by the supersonic flow deflects the floating head parallel to the flow direction. Strain gages mounted across a small gap between the bottom of the floating element and the bottom clamp provide the restoring force on the floating head. These strain gages also measure the floating head deflection caused by the flow shearing force. The steel model design was built and tested to determine the feasibility of the design concept. The results from the supersonic wind tunnel at Mach 2.4 were reasonable but the steel model was unable to correctly respond to the short-duration flow of the shock tunnel. A skin friction gage made of a machinable ceramic called Macor was then designed to increase the resonant natural frequency (3600 Hz) and the insulating properties of the gage. Consequently, the Macor model floating head design is capable of measuring the skin friction coefficient in short duration, high enthalpy supersonic flows as well as long duration supersonic flows. The Macor model design yielded skin friction coefficient values near the expected value of 0.0014 when placed in a supersonic tunnel at both Mach 2.4 and Mach 3.0 and in a Mach 3.0 shock tunnel. / Master of Science
79

The design of skin friction gages for measurements in high-speed, short-duration flows

Busic, John F. 06 October 2009 (has links)
The design of skin friction gages has been explored analytically and experimentally for measuring skin friction in high-speed, short-duration flow. Several gage designs were considered. One promising gage design used a floating element, while another was microfabricated using sputtering techniques. All of the gages were physically modeled to determine the output caused by Mach 2 unheated flow. Frequency response analysis was also performed on the floating element and sputtered design to determine their ability to make measurements in the millisecond time range. Temperature and normal pressure effects were a source of measurement error, and techniques were developed for minimizing the error due these effects. Tests were made in Mach 2 flow and the results of these tests are discussed. Recommendations are provided as to how the gages can be improved for further testing. / Master of Science
80

Design and calibration of a rapid-response thin-film heat flux gage

Campbell, David Scott January 1985 (has links)
A local heat-flux measurement system was built, calibrated and tested for use in unsteady flows. The system was designed to maintain constant wall temperature boundary conditions. The measuring element is a thin-film heat flux gage made by sputter-coating gold on a substrate. A constant-temperature anemometer is used to maintain the thin-film gage at a specified temperature under fluctuating conditions. A separate temperature control system maintains the surrounding boundary at the gage temperature. The system was calibrated for both steady and unsteady flows using a specially designed calibrator for local heat flux gages. The steady calibration was done with predominantly convective heat transfer . The unsteady calibration was achieved by adding oscillating radiant energy to the surface. Consequently, quantitative results can be obtained for both mean and fluctuating components of the heat transfer. The frequency response was good to 92 hertz. Sample results are presented for unsteady heat transfer caused by the vortex shedding from a cylinder in a steady crossflow. The shedding frequency was 82 hertz. / M.S.

Page generated in 0.0277 seconds