• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multilevel Gain Cell Arrays for Fault-Tolerant VLSI Systems

Khalid, Muhammad Umer January 2011 (has links)
Embedded memories dominate area, power and cost of modern very large scale integrated circuits system on chips ( VLSI SoCs). Furthermore, due to process variations, it becomes challenging to design reliable energy efficient systems. Therefore, fault-tolerant designs will be area efficient, cost effective and have low power consumption. The idea of this project is to design embedded memories where reliability is intentionally compromised to increase storage density. Gain cell memories are smaller than SRAM and unlike DRAM they are logic compatible. In multilevel DRAM storage density is increased by storing two bits per cell without reducing feature size. This thesis targets multilevel read and write schemes that provide short access time, small area overhead and are highly reliable. First, timing analysis of reference design is performed for read and write operation. An analytical model of write bit line (WBL) is developed to have an estimate of write delay. Replica technique is designed to generate the delay and track variations of storage array. Design of replica technique is accomplished by designing replica column, read and write control circuits. A memory controller is designed to control the read and write operation in multilevel DRAM. A multilevel DRAM is with storage capacity of eight kilobits is designed in UMC 90 nm technology. Simulations are performed for testing and results are reported for energy and access time. Monte Carlo analysis is done for variation tolerance of replica technique. Finally, multilevel DRAM with replica technique is compared with reference design to check the improvement in access times.
2

A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application

Slesazeck, Stefan, Ravsher, Taras, Havel, Viktor, Breyer, Evelyn T., Mulaosmanovic, Halid, Mikolajick, Thomas 20 June 2022 (has links)
A 2TnC ferroelectric memory gain cell consisting of two transistors and two or more ferroelectric capacitors (FeCAP) is proposed. While a pre-charge transistor allows to access the single cell in an array, the read transistor amplifies the small read signals from small-scaled FeCAPs that can be operated either in FeRAM mode by sensing the polarization reversal current, or in ferroelectric tunnel junction (FTJ) mode by sensing the polarization dependent leakage current. The simultaneous read or write operation of multiple FeCAPs is used to realize compute-in-memory (CiM) algorithms that enable processing of data being represented by both, non-volatilely internally stored data and externally applied data. The internal gain of the cell mitigates the need for 3D integration of the FeCAPs, thus making the concept very attractive especially for embedded memories. Here we discuss design constraints of the 2TnC cell and present the proof-of-concept for realizing versatile (CiM) approaches by means of electrical characterization results.

Page generated in 0.0741 seconds