• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 29
  • 29
  • 17
  • 15
  • 14
  • 11
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi-wavelength view of Lyman break galaxies at z ~ 3 : star formation and dust attenuation / Analyse multi-longueurs d'onde de galaxies à discontinuité de Lyman à z ~ 3 : formation stellaire et atténuation par les poussières

Álvarez Márquez, Javier 09 December 2016 (has links)
Depuis le milieu des années 1990, la taille des échantillons de galaxies situées à très grande distance (“redshift”) de nous, au tout début de la vie de l'univers a augmenté grace à la sensibilité croissante des télescopes optiques / infrarouge proche. Cependant, les propriétés des poussières continues dans ces galaxies sont mal connues en raison de l'absence d'observations profondes en infrarouge lointain et en sous-mm. Cette thèse explore les propriétés multi-longueur d'onde d'une population de galaxies observées ~ 2Gyr après le Big Bang. Notre échantillon comprend 22000 galaxies, et il a été sélectionné à partir de la discontinuité de Lyman. Nous utilisons une technique statistique, appelée analyse d'empilement, qui combine le signal provenant d'un grand nombre de sources individuellement non détectées dans le but d’ameliorer les limites de détection par rapport aux observations actuelles, à ces longueurs d'onde. Elle nous permet d'obtenir une distribution spectrale d’énergie complete de l’ultraviolet lointain à l’infrarouge lointain, et d'étudier la formation des étoiles et l'atténuation par la poussière sur ces galaxies. / Since the mid-1990s, the sample of galaxies in the early universe has been growing thanks to the increasing sensitivities in the Optical/NIR telescopes. However, their dust properties are poorly known due to the lack of deep far-infrared or sub-mm observations. This thesis explores the multi-wavelength properties of a population of galaxies observed ~2Gyr after the Big Bang. Our sample includes 22000 galaxies, and it has been selected by the classical U-dropout or Lyman Break technique. We use a statistical technique, called stacking analysis, that combines the signal from a large number of sources to lower the detection limits on the current long wavelengths observations. It allows us to obtain data over the full FUV-to-FIR spectral domain, and study the star formation and dust attenuation of these galaxies.
12

SENSITIVE VERY LONG BASELINE INTERFEROMETRY STUDIES OF INTERACTING/MERGING GALAXIES

Momjian, Emmanuel 01 January 2003 (has links)
It has become clear in recent years that the study of interacting/merging galaxies plays an important role in understanding important astrophysical phenomena. This thesis presents an observational study of interacting/merging galaxies at radio frequencies. The observations have been carried out at extremely high resolution using very long baseline interferometry. The observations described here include: (1) A study of the high velocity Hi absorption associated with the peculiar galaxy NGC 1275; (2) A study of the radio continuum and Hi absorption of the ULIRG IRAS 172080014; (3) A study of the radio continuum and Hi absorption of the LIRG NGC 7674. Some of the most prominent results of these observations include: Detection of several narrow Hi absorption features in the high velocity system associated with NGC 1275. These Hi absorption lines were observed toward the strong radio nucleus 3C 84. The results indicate the existence of several Hi clouds with velocity differences and widths similar to those seen in Galactic neutral hydrogen absorption and similar to some of the Hi absorption seen in the Large Magellanic Cloud. The discovery of an extreme nuclear starburst region in the advanced merger system IRAS 172080014. Our results suggest a star formation rate of 84 M yr-1, and a supernova rate of 4 yr-1. Hi absorption is detected in multiple components with optical depths ranging between 0.3 and 2.5, and velocity widths between 58 and 232 km s-1. The detection of complex jet structures in the inner 1 kpc region of the galaxy NGC 7674. At full resolution, several compact sources are observed with brightness temperatures on the order of 107 K. While it is possible that one of these compact structures could host an AGN, they could also be shock-like features formed by the interaction of the jet with compact interstellar clouds in the nuclear region of this galaxy. At least eight Hi absorption lines are detected toward some of the continuum emission regions in NGC 7674. If the widest Hi feature in our observations is rotationally broadened by a central supermassive black hole, the implied dynamical mass is about 107 M.
13

On the redshift distribution and physical properties of ACT-selected DSFGs

Su, T., Marriage, T. A., Asboth, V., Baker, A. J., Bond, J. R., Crichton, D., Devlin, M. J., Dünner, R., Farrah, D., Frayer, D. T., Gralla, M. B., Hall, K., Halpern, M., Harris, A. I., Hilton, M., Hincks, A. D., Hughes, J. P., Niemack, M. D., Page, L. A., Partridge, B., Rivera, J., Scott, D., Sievers, J. L., Thornton, R. J., Viero, M. P., Wang, L., Wollack, E. J., Zemcov, M. 01 January 2017 (has links)
We present multi-wavelength detections of nine candidate gravitationally lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z = 4.1(-1.0)(+1.1) (68 per cent confidence interval), as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(mu LIR/L-circle dot) = 13.86(-0.30)(+0.33), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is root mu d = 4.2(-1.0)(+1.7) kpc, further evidence of strong lensing or multiplicity, since the typical diameter of DSFGs is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2(-1.9)(+3.7)) to dust around the peak in the modified blackbody spectrum (lambda(obs) <= 500 mu m), a result that is robust to model choice.
14

A deep ALMA image of the Hubble Ultra Deep Field

Dunlop, J. S., McLure, R. J., Biggs, A. D., Geach, J. E., Michałowski, M. J., Ivison, R. J., Rujopakarn, W., van Kampen, E., Kirkpatrick, A., Pope, A., Scott, D., Swinbank, A. M., Targett, T. A., Aretxaga, I., Austermann, J. E., Best, P. N., Bruce, V. A., Chapin, E. L., Charlot, S., Cirasuolo, M., Coppin, K., Ellis, R. S., Finkelstein, S. L., Hayward, C. C., Hughes, D. H., Ibar, E., Jagannathan, P., Khochfar, S., Koprowski, M. P., Narayanan, D., Nyland, K., Papovich, C., Peacock, J. A., Rieke, G. H., Robertson, B., Vernstrom, T., Werf, P. P. van der, Wilson, G. W., Yun, M. 01 April 2017 (has links)
We present the results of the first, deep Atacama Large Millimeter Array ( ALMA) imaging covering the full similar or equal to 4.5 arcmin(2) of the Hubble Ultra Deep Field ( HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching sigma 1.3 similar or equal to 35 mu Jy, at a resolution of similar or equal to 0.7 arcsec. From an initial list of similar or equal to 50 > 3.5 sigma peaks, a rigorous analysis confirms 16 sources with S-1.3 > 120 mu Jy. All of these have secure galaxy counterparts with robust redshifts (< z > = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses ( M-*) and UV+FIR star formation rates ( SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z = 2 our ALMA sample contains seven of the nine galaxies in the HUDF withM(*) = 2 x 10(10)M circle dot, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 similar or equal to 10 mu Jy. We find strong evidence for a steep star-forming `main sequence' at z similar or equal to 2, with SFR. M* and a mean specific SFR similar or equal to 2.2 Gyr(-1). Moreover, we find that similar or equal to 85 per cent of total star formation at z similar or equal to 2 is enshrouded in dust, with similar or equal to 65 per cent of all star formation at this epoch occurring in high-mass galaxies ( M-* > 2 x 10(10)M circle dot), for which the average obscured: unobscured SF ratio is similar or equal to 200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z similar or equal to 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z similar or equal to 4.
15

PROBING THE INTERSTELLAR MEDIUM AND STAR FORMATION OF THE MOST LUMINOUS QUASAR AT z = 6.3

Wang, Ran, Wu, Xue-Bing, Neri, Roberto, Fan, Xiaohui, Walter, Fabian, Carilli, Chris L., Momjian, Emmanuel, Bertoldi, Frank, Strauss, Michael A., Li, Qiong, Wang, Feige, Riechers, Dominik A., Jiang, Linhua, Omont, Alain, Wagg, Jeff, Cox, Pierre 10 October 2016 (has links)
We report new IRAM/PdBI, JCMT/SCUBA-2, and VLA observations of the ultraluminous quasar SDSS J010013.02+280225.8 (hereafter, J0100+2802) at z =. 6.3, which hosts the most massive supermassive black hole (SMBH), 1.24 x 10(10) M circle dot, that is known at z > 6. We detect the [C II] 158 mu m fine structure line and molecular CO(6-5) line and continuum emission at 353, 260, and 3 GHz from this quasar. The CO(2-1) line and the underlying continuum at 32 GHz are also marginally detected. The [C II] and CO detections suggest active star formation and highly excited molecular gas in the quasar host galaxy. The redshift determined with the [C II] and CO lines shows a velocity offset of similar to 1000 km s(-1) from that measured with the quasar Mg II line. The CO (2-1) line luminosity provides a direct constraint on the molecular gas mass, which is about (1.0 +/- 0.3) x 10(10) M circle dot We estimate the FIR luminosity to be (3.5 +/- 0.7) x 10(12) L circle dot, and the UV-to-FIR spectral energy distribution of J0100 +2802 is consistent with the templates of the local optically luminous quasars. The derived [C II]-to-FIR luminosity ratio of J0100+2802 is 0.0010 +/- 0.0002, which is slightly higher than the values of the most FIR luminous quasars at z similar to 6. We investigate the constraint on the host galaxy dynamical mass of J0100 vertical bar 2802 based on the [C II] line spectrum. It is likely that this ultraluminous quasar lies above the local SMBH-galaxy mass relationship, unless we are viewing the system at a small inclination angle.
16

SDSS J163459.82+204936.0: A RINGED INFRARED-LUMINOUS QUASAR WITH OUTFLOWS IN BOTH ABSORPTION AND EMISSION LINES

Liu, Wen-Juan, Zhou, Hong-Yan, Jiang, Ning, Wu, Xufen, Lyu, Jianwei, Shi, Xiheng, Shu, Xinwen, Jiang, Peng, Ji, Tuo, Wang, Jian-Guo, Wang, Shu-Fen, Sun, Luming 05 May 2016 (has links)
SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L-IR = 10(11.91) L-circle dot. We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR approximate to 140 M-circle dot yr(-1), estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in H beta, He I lambda lambda 5876, 10830, and other emission lines consistently with an offset velocity of approximate to 900 km s(-1), as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He I lambda 10830 and the bulk blueshifting of [O III].5007), while there exist blueshifted broad absorption lines (BALs) in Na I. D and He I lambda lambda 3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 10(4) < n(H) less than or similar to 10(5) cm(-3), ionization parameter 10(-1.3) less than or similar to U 10(-0.7), and column density 10(22.5) less than or similar to N-H less than or similar to 10(22.9) cm(-2), which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of similar to 48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 10(44)-10(46) erg s(-1). J1634+2049 has a off-centered galactic ring on the scale of similar to 30. kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the coevolution scenario invoking galaxy merger (or violent interaction) and quasar feedback. Its proximity enables our further observational investigations in detail (or tests) of the co-evolution paradigm.
17

Viscous time lags between starburst and AGN activity

Blank, Marvin, Duschl, Wolfgang J. 21 October 2016 (has links)
There is strong observational evidence indicating a time lag of order of some 100 Myr between the onset of starburst and AGN activity in galaxies. Dynamical time lags have been invoked to explain this. We extend this approach by introducing a viscous time lag the gas additionally needs to flow through the AGN's accretion disc before it reaches the central black hole. Our calculations reproduce the observed time lags and are in accordance with the observed correlation between black hole mass and stellar velocity dispersion.
18

Green Pea Galaxies: Physical Properties of Low-redshift Analogs of High-redshift Lyman-alpha Emitters

January 2018 (has links)
abstract: Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2018
19

Planck’s dusty GEMS

Cañameras, R., Nesvadba, N., Kneissl, R., Frye, B., Gavazzi, R., Koenig, S., Le Floc’h, E., Limousin, M., Oteo, I., Scott, D. 23 August 2017 (has links)
We present an analysis of high-resolution ALMA interferometry of CO(4-3) line emission and dust continuum in the "Ruby" (PLCK_G244.8+54.9), a bright, gravitationally lensed galaxy at z = 3.0 discovered with the Planck all-sky survey. The Ruby is the brightest of Planck's dusty GEMS, a sample of 11 of the brightest gravitationally lensed high-redshift galaxies on the extragalactic sub-mm sky. We resolve the high-surface-brightness continuum and CO line emission of the Ruby in several extended clumps along a partial, nearly circular Einstein ring with 1.4 '' diameter around a massive galaxy at z = 1.5. Local star-formation intensities are up to 2000 M-circle dot yr(-1) kpc(-2), amongst the highest observed at high redshift, and clearly in the range of maximal starbursts. Gas-mass surface densities are a few x10(4) M-circle dot pc(-2). The Ruby lies at, and in part even above, the starburst sequence in the Schmidt-Kennicutt diagram, and at the limit expected for star formation that is self-regulated through the kinetic energy injection from radiation pressure, stellar winds, and supernovae. We show that these processes can also inject sufficient kinetic energy and momentum into the gas to explain the turbulent line widths, which are consistent with marginally gravitationally bound molecular clouds embedded in a critically Toomre-stable disk. The star-formation efficiency is in the range 1-10% per free-fall time, consistent with the notion that the pressure balance that sets the local star-formation law in the Milky Way may well be universal out to the highest star-formation intensities. AGN feedback is not necessary to regulate the star formation in the Ruby, in agreement with the absence of a bright AGN component in the infrared and radio regimes.
20

A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

Privon, G. C., Stierwalt, S., Patton, D. R., Besla, G., Pearson, S., Putman, M., Johnson, K. E., Kallivayalil, N., Liss, S. 01 September 2017 (has links)
Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Ha emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M-circle dot yr(-1), which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of > 50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

Page generated in 0.0486 seconds