41 |
CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIESBalestra, I., Mercurio, A., Sartoris, B., Girardi, M., Grillo, C., Nonino, M., Rosati, P., Biviano, A., Ettori, S., Forman, W., Jones, C., Koekemoer, A., Medezinski, E., Merten, J., Ogrean, G. A., Tozzi, P., Umetsu, K., Vanzella, E., Weeren, R. J. van, Zitrin, A., Annunziatella, M., Caminha, G. B., Broadhurst, T., Coe, D., Donahue, M., Fritz, A., Frye, B., Kelson, D., Lombardi, M., Maier, C., Meneghetti, M., Monna, A., Postman, M., Scodeggio, M., Seitz, S., Ziegler, B. 08 June 2016 (has links)
We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS. J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over similar to 600 arcmin(2), including similar to 800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to similar to 2.2 r(200) (similar to 4Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M-200 similar to 0.9 x 10(15) M-circle dot and sigma(V r200) similar to 1000 km s(-1)) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Delta V-rf similar to 1100 km s(-1) with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent sub-clump similar to 600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z similar to 0.390, similar to 10' south of the cluster center, projected at similar to 3Mpc, with a relative line-of-sight velocity of Delta V-rf similar to 1700 km s(-1). The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources.
|
42 |
Disc colours in field and cluster spiral galaxies at 0.5 ≲ z ≲ 0.8Cantale, Nicolas, Jablonka, Pascale, Courbin, Frédéric, Rudnick, Gregory, Zaritsky, Dennis, Meylan, Georges, Desai, Vandana, De Lucia, Gabriella, Aragón-Salamanca, Alfonso, Poggianti, Bianca M., Finn, Rose, Simard, Luc 18 April 2016 (has links)
We present a detailed study of the colours of late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 less than or similar to z less than or similar to 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolved their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V - I colours of the discs. We find that 50% of cluster spiral galaxies have disc V - I colours redder by more than 1 sigma of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cores. Passive spiral galaxies constitute 20% of our sample. These systems are not abnormally dusty. They are are made of old stars and are located on the cluster red sequences. Another 24% of our sample is composed of galaxies that are still active and star forming, but less so than galaxies with similar morphologies in the field. These galaxies are naturally located in the blue sequence of their parent cluster colour-magnitude diagrams. The reddest of the discs in clusters must have stopped forming stars more than similar to 5 Gyr ago. Some of them are found among infalling galaxies, suggesting preprocessing. Our results confirm that galaxies are able to continue forming stars for some significant period of time after being accreted into clusters, and suggest that star formation can decline on seemingly long (1 to 5 Gyr) timescales.
|
43 |
The mass of the Coma cluster.The, Lih-Sin. January 1989 (has links)
The dynamical mass determination of galaxies and systems of galaxies shows a large excess of mass above what one observes directly. This excess of mass indicates the presence of dark matter. The nature of this dark matter is still unknown and dark matter in the outer regions of large stellar structures such as clusters of galaxies might provide enough matter to close the universe. In this dissertation we investigate in detail the mass distribution of the Coma cluster. We show that optical data alone are unable to distinguish between a wide range of possible mass distribution for the Coma cluster. Low-mass models must have larger central density than high-mass models and require that the galaxies move on near-circular orbits, whereas high-mass models require the galaxy orbits to be predominantly radial. The optical data constrain the amount of dark matter very poorly. The X-ray data can also be used for a mass determination of the Coma cluster. These data may require the mass of the cluster to be more concentrated to the core than a light-traces-mass model if the central temperature of the gas is high. However, they do not put any constraint on the mass distribution beyond a Mpc or two. The above analysis, and most other approaches, assume the existence of dark matter. An alternative approach has been proposed by Milgrom (1983a,b,c): in his theory, the Newtonian law of motion breaks down in a weak field, and must be modified. The present analysis shows that this model is also consistent with optical and X-ray data on the Coma cluster, although a good fit required values for Milgrom's "universal" parameter aₒ to be 2h¹·⁵ (Hₒ = 50 h km/s/Mpc) higher than those inferred from the rotation curves of spiral galaxies. Finally, we investigate whether the model of an expanding cluster dominated by a massive binary galaxy, first suggested by Valtonen and Byrd (1979), is consistent with optical data on the surface density and velocity dispersion of the Coma cluster. We simulate the evolution of this model for a wide variety of initial conditions. We find that galaxy counts in the model can be made to agree with observation, but that the observed velocity dispersion profile cannot be reproduced. A number of other arguments suggest that the central galaxies in Coma cannot be as massive as required by the model. This model is not a viable representation of the Coma cluster.
|
44 |
CODEX weak lensing: concentration of galaxy clusters at z ∼ 0.5Cibirka, N., Cypriano, E. S., Brimioulle, F., Gruen, D., Erben, T., van Waerbeke, L., Miller, L., Finoguenov, A., Kirkpatrick, C., Henry, J. Patrick, Rykoff, E., Rozo, E., Dupke, R., Kneib, J.-P., Shan, H., Spinelli, P. 06 1900 (has links)
We present a stacked weak-lensing analysis of 27 richness selected galaxy clusters at 0.40 <= z <= 0.62 in the COnstrain Dark Energy with X-ray galaxy clusters (CODEX) survey. The fields were observed in five bands with the Canada-France-Hawaii Telescope (CFHT). We measure the stacked surface mass density profile with a 14 sigma significance in the radial range 0.1 < R Mpc h(-1) < 2.5. The profile is well described by the halo model, with the main halo term following a Navarro-Frenk-White profile (NFW) profile and including the off-centring effect. We select the background sample using a conservative colour-magnitude method to reduce the potential systematic errors and contamination by cluster member galaxies. We perform a Bayesian analysis for the stacked profile and constrain the best-fitting NFW parameters M-200c = 6.6(- 0.8)(+1.0) x 10(14) h(-1)M(circle dot) and c(200c) = 3.7(+0.7) (-0.6). The off-centring effect was modelled based on previous observational results found for redMaPPer Sloan Digital Sky Survey clusters. Our constraints on M(200)c and c(200)c allow us to investigate the consistency with numerical predictions and select a concentration-mass relation to describe the high richness CODEX sample. Comparing our best-fitting values forM(200c) and c(200c) with other observational surveys at different redshifts, we find no evidence for evolution in the concentration-mass relation, though it could be mitigated by particular selection functions. Similar to previous studies investigating the X-ray luminosity-mass relation, our data suggest a lower evolution than expected from self-similarity.
|
45 |
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy SurveyBufanda, E., Hollowood, D., Jeltema, T. E., Rykoff, E. S., Rozo, E., Martini, P., Abbott, T. M. C., Abdalla, F. B., Allam, S., Banerji, M., Benoit-Lévy, A., Bertin, E., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Evrard, A. E., Fausti Neto, A., Flaugher, B., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Miquel, R., Mohr, J. J., Ogando, R., Plazas, A. A., Romer, A. K., Rooney, P., Sanchez, E., Santiago, B., Scarpine, V., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Thomas, D., Tucker, D. L., Walker, A. R. 01 March 2017 (has links)
The correlation between active galactic nuclei (AGNs) and environment provides important clues to AGN fuelling and the relationship of black hole growth to galaxy evolution. In this paper, we analyse the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray-detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGNs with LX > 1043 erg s(-1) in non-central, host galaxies with luminosity greater than 0.5L(*) from a total sample of 432 clusters in the redshift range of 0.1< z <0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of similar to 8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6 sigma. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z > 0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.
|
46 |
Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix ClusterRussell, H. R., McDonald, M., McNamara, B. R., Fabian, A. C., Nulsen, P. E. J., Bayliss, M. B., Benson, B. A., Brodwin, M., Carlstrom, J. E., Edge, A. C., Hlavacek-Larrondo, J., Marrone, D. P., Reichardt, C. L., Vieira, J. D. 14 February 2017 (has links)
We report new ALMA observations of the CO(3-2) line emission from the 2.1 +/- 0.3*10(10)M(circle dot). molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate of 500-800M(circle dot)yr(-1) and powerful black hole activity in the forms of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each 10-20 kpc long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.
|
47 |
SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEYBayliss, M. B., Ruel, J., Stubbs, C. W., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Benson, B. A., Bleem, L. E., Bocquet, S., Brodwin, M., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dietrich, J. P., Dobbs, M. A., Doucouliagos, A. N., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Murray, S. S., Padin, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Schrabback, T., Shirokoff, E., Song, J., Spieler, H. G., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zenteno, A. 09 November 2016 (has links)
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg(2) of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] lambda lambda 3727, 3729 and H-delta, and the 4000 angstrom break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or similar to 20% of the full SPT-SZ sample.
|
48 |
Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPTSoergel, B., Flender, S., Story, K. T., Bleem, L., Giannantonio, T., Efstathiou, G., Rykoff, E., Benson, B. A., Crawford, T., Dodelson, S., Habib, S., Heitmann, K., Holder, G., Jain, B., Rozo, E., Saro, A., Weller, J., Abdalla, F. B., Allam, S., Annis, J., Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Carlstrom, J. E., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Chiu, I., Chown, R., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., de Haan, T., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Holzapfel, W. L., Honscheid, K., James, D. J., Keisler, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., McDonald, M., Melchior, P., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Omori, Y., Plazas, A. A., Rapetti, D., Reichardt, C. L., Romer, A. K., Roodman, A., Saliwanchik, B. R., Sanchez, E., Schubnell, M., Sevilla-Noarbe, I., Sheldon, E., Smith, R. C., Soares-Santos, M., Sobreira, F., Stark, A., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vieira, J. D., Walker, A. R., Whitehorn, N. 21 September 2016 (has links)
We detect the kinematic Sunyaev-Zel'dovich (kSZ) effect with a statistical significance of 4.2 sigma by combining a cluster catalogue derived from the first year data of the Dark Energy Survey with cosmic microwave background temperature maps from the South Pole Telescope Sunyaev-Zel'dovich Survey. This measurement is performed with a differential statistic that isolates the pairwise kSZ signal, providing the first detection of the large-scale, pairwise motion of clusters using redshifts derived from photometric data. By fitting the pairwise kSZ signal to a theoretical template, we measure the average central optical depth of the cluster sample, (tau) over bar (e) = (3.75 +/- 0.89) x 10(-3). We compare the extracted signal to realistic simulations and find good agreement with respect to the signal to noise, the constraint on (tau) over bar (e), and the corresponding gas fraction. High-precision measurements of the pairwise kSZ signal with future data will be able to place constraints on the baryonic physics of galaxy clusters, and could be used to probe gravity on scales greater than or similar to 100 Mpc.
|
49 |
Comparing Dark Energy Survey and HST–CLASH observations of the galaxy cluster RXC J2248.7−4431: implications for stellar mass versus dark matterPalmese, A., Lahav, O., Banerji, M., Gruen, D., Jouvel, S., Melchior, P., Aleksić, J., Annis, J., Diehl, H. T., Hartley, W. G., Jeltema, T., Romer, A. K., Rozo, E., Rykoff, E. S., Seitz, S., Suchyta, E., Zhang, Y., Abbott, T. M. C., Abdalla, F. B., Allam, S., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Dietrich, J. P., Doel, P., Estrada, J., Evrard, A. E., Flaugher, B., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., Maia, M. A. G., Marshall, J. L., Miller, C. J., Miquel, R., Nord, B., Ogando, R., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D., Vikram, V. 01 December 2016 (has links)
We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.
|
50 |
Detection of magnetic fields and diffuse radio emission in Abell 3667 and other rich southern clusters of galaxies / Melanie Johnston-Hollitt.Johnston-Hollitt, Melanie January 2003 (has links)
"July 2003." / Bibliography: p. 203-211. / xxii, 211 p. : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Investigates properties of magnetic fields in galaxy clusters via both statistical Faraday rotation measures and diffuse source polarimetry, and investigates the nature and generation mechanisms for diffuse radio emission in the ACO cluster A3667. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physics and Mathematical Physics, 2003
|
Page generated in 0.068 seconds