Spelling suggestions: "subject:"galaxies: distances anda redshift"" "subject:"galaxies: distances ando redshift""
1 |
Spectroscopy of Ultra-diffuse Galaxies in the Coma ClusterKadowaki, Jennifer, Zaritsky, Dennis, Donnerstein, R. L. 30 March 2017 (has links)
We present spectra of five ultra-diffuse galaxies (UDGs) in the vicinity of the Coma cluster obtained with the Multi-object Double Spectrograph on the Large Binocular Telescope. We confirm four of these as members of the cluster, quintupling the number of spectroscopically confirmed systems. Like the previously confirmed large (projected half-light radius > 4.6 kpc) UDG, DF44, the systems we targeted all have projected half-light radii > 2.9 kpc. As such, we spectroscopically confirm a population of physically large UDGs in the Coma cluster. The remaining UDG is located in the field, about 45 Mpc behind the cluster. We observe Balmer and Ca II H and K absorption lines in all of our UDG spectra. By comparing the stacked UDG spectrum against stellar population synthesis models, we conclude that, on average, these UDGs are composed of metal-poor stars ([Fe/H] less than or similar to -1.5). We also discover the first UDG with [O II] and [O III] emission lines within a clustered environment, demonstrating that not all cluster UDGs are devoid of gas and sources of ionizing radiation.
|
2 |
SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEYBayliss, M. B., Ruel, J., Stubbs, C. W., Allen, S. W., Applegate, D. E., Ashby, M. L. N., Bautz, M., Benson, B. A., Bleem, L. E., Bocquet, S., Brodwin, M., Capasso, R., Carlstrom, J. E., Chang, C. L., Chiu, I., Cho, H-M., Clocchiatti, A., Crawford, T. M., Crites, A. T., Haan, T. de, Desai, S., Dietrich, J. P., Dobbs, M. A., Doucouliagos, A. N., Foley, R. J., Forman, W. R., Garmire, G. P., George, E. M., Gladders, M. D., Gonzalez, A. H., Gupta, N., Halverson, N. W., Hlavacek-Larrondo, J., Hoekstra, H., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Jones, C., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Linden, A. von der, Luong-Van, D., Mantz, A., Marrone, D. P., McDonald, M., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Murray, S. S., Padin, S., Pryke, C., Rapetti, D., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Schrabback, T., Shirokoff, E., Song, J., Spieler, H. G., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Vanderlinde, K., Vieira, J. D., Vikhlinin, A., Williamson, R., Zenteno, A. 09 November 2016 (has links)
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg(2) of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] lambda lambda 3727, 3729 and H-delta, and the 4000 angstrom break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or similar to 20% of the full SPT-SZ sample.
|
3 |
THE IMPACT OF JWST BROADBAND FILTER CHOICE ON PHOTOMETRIC REDSHIFT ESTIMATIONBisigello, L., Caputi, K. I., Colina, L., Fèvre, O. Le, Nørgaard-Nielsen, H. U., Pérez-González, P. G., Pye, J., Werf, P. van der, Ilbert, O., Grogin, N., Koekemoer, A. 05 December 2016 (has links)
The determination of galaxy redshifts in the James Webb Space Telescope's (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6-5.0 mu m and Mid Infrared Instrument (MIRI) at lambda > 5.0 mm. In this work we analyze the impact of choosing different combinations of NIRCam and MIRI broadband filters (F070W to F770W), as well as having ancillary data at lambda < 0.6 mu m, on the derived photometric redshifts (z(phot)) of a total of 5921 real and simulated galaxies, with known input redshifts z = 0-10. We found that observations at lambda < 0.6 mm are necessary to control the contamination of high-z samples by low-z interlopers. Adding MIRI (F560W and F770W) photometry to the NIRCam data mitigates the absence of ancillary observations at l < 0.6 mm and improves the redshift estimation. At z = 7-10, accurate zphot can be obtained with the NIRCam broadbands alone when S/N >= 10, but the z(phot) quality significantly degrades atb S/N <= 5. Adding MIRI photometry with 1 mag brighter depth than the NIRCam depth allows for a redshift recovery of 83%-99%, depending on spectral energy distribution type, and its effect is particularly noteworthy for galaxies with nebular emission. The vast majority of NIRCam galaxies with [F150W] = 29. AB mag at z =7-10 will be detected with MIRI at [F560W, F770W] < 28 mag if these sources are at least mildly evolved or have spectra with emission lines boosting the mid-infrared fluxes.
|
4 |
Quasar Photometric Redshifts and Candidate Selection: A New Algorithm Based on Optical and Mid-infrared Photometric DataYang, Qian, Wu, Xue-Bing, Fan, Xiaohui, Jiang, Linhua, McGreer, Ian, Green, Richard, Yang, Jinyi, Schindler, Jan-Torge, Wang, Feige, Zuo, Wenwen, Fu, Yuming 01 December 2017 (has links)
We present a new algorithm to estimate quasar photometric redshifts (photo-zs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multidimensional space of relative fluxes as a function of redshift and magnitude. For 151,392 quasars in the SDSS, we achieve a photo-z accuracy, defined as the fraction of quasars with the difference between the photo-z z(p) and the spectroscopic redshift z(s), vertical bar Delta z vertical bar=vertical bar z(s)-z(p)vertical bar/(1 + z(s)) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-z accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-z accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars, and galaxies are calculated, respectively, based on (1) the quasar luminosity function, (2) the Milky Way synthetic simulation with the Besancon model, and (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS g, r, z, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5 < z < 4.5, and a wide magnitude range 18 < r < 21.5 mag. Our photo-z regression and classification method has the potential to extend to future surveys. The photo-z code will be publicly available.
|
5 |
Characterizing the WISE-selected heavily obscured quasar population with optical spectroscopy from the Southern African Large TelescopeHviding, Raphael E., Hickox, Ryan C., Hainline, Kevin N., Carroll, Christopher M., DiPompeo, Michael A., Yan, Wei, Jones, Mackenzie L. 02 1900 (has links)
We present the results of an optical spectroscopic survey of 46 heavily obscured quasar candidates. Objects are selected using their mid-infrared (mid-IR) colours and magnitudes from the Wide-Field Infrared Survey Explorer (WISE) anzd their optical magnitudes from the Sloan Digital Sky Survey. Candidate Active Galactic Nuclei (AGNs) are selected to have mid-IR colours indicative of quasar activity and lie in a region of mid-IR colour space outside previously published X-ray based selection regions. We obtain optical spectra for our sample using the Robert Stobie Spectrograph on the Southern African Large Telescope. 30 objects (65 per cent) have identifiable emission lines, allowing for the determination of spectroscopic redshifts. Other than one object at z similar to 2.6, candidates have moderate redshifts ranging from z = 0.1 to 0.8 with a median of 0.3. 21 (70 per cent) of our objects with identified redshift (46 per cent of the whole sample) are identified as AGNs through common optical diagnostics. We model the spectral energy distributions of our sample and found that all require a strong AGN component, with an average intrinsic AGN fraction at 8 mu m of 0.91. Additionally, the fits require large extinction coefficients with an average E(B - V)(AGN) = 17.8 (average A(V)(AGN) = 53.4). By focusing on the area outside traditional mid-IR photometric cuts, we are able to capture and characterize a population of deeply buried quasars that were previously unattainable through X-ray surveys alone.
|
6 |
Lyman continuum escape fraction of faint galaxies at z ~ 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBCGrazian, A., Giallongo, E., Paris, D., Boutsia, K., Dickinson, M., Santini, P., Windhorst, R. A., Jansen, R. A., Cohen, S. H., Ashcraft, T. A., Scarlata, C., Rutkowski, M. J., Vanzella, E., Cusano, F., Cristiani, S., Giavalisco, M., Ferguson, H. C., Koekemoer, A., Grogin, N. A., Castellano, M., Fiore, F., Fontana, A., Marchi, F., Pedichini, F., Pentericci, L., Amorín, R., Barro, G., Bonchi, A., Bongiorno, A., Faber, S. M., Fumana, M., Galametz, A., Guaita, L., Kocevski, D. D., Merlin, E., Nonino, M., O’Connell, R. W., Pilo, S., Ryan, R. E., Sani, E., Speziali, R., Testa, V., Weiner, B., Yan, H. 24 May 2017 (has links)
Context. The reionization of the Universe is one of the most important topics of present-day astrophysical research. The most plausible candidates for the reionization process are star-forming galaxies, which according to the predictions of the majority of the theoretical and semi-analytical models should dominate the H I ionizing background at z greater than or similar to 3. Aims. We measure the Lyman continuum escape fraction, which is one of the key parameters used to compute the contribution of star-forming galaxies to the UV background. It provides the ratio between the photons produced at lambda <= 912 angstrom rest-frame and those that are able to reach the inter-galactic medium, i.e. that are not absorbed by the neutral hydrogen or by the dust of the galaxy's inter-stellar medium. Methods. We used ultra-deep U-band imaging (U = 30.2 mag at 1 sigma) from Large Binocular Camera at the Large Binocular Telescope (LBC/LBT) in the CANDELS/GOODS-North field and deep imaging in the COSMOS and EGS fields in order to estimate the Lyman continuum escape fraction of 69 star-forming galaxies with secure spectroscopic redshifts at 3.27 <= z <= 3.40 to faint magnitude limits (L = 0.2L*, or equivalently M-1500 similar to -19). The narrow redshift range implies that the LBC U-band filter exclusively samples the lambda <= 912 angstrom rest-frame wavelengths. Results. We measured through stacks a stringent upper limit (<1.7% at 1 sigma) for the relative escape fraction of H I ionizing photons from bright galaxies (L > L*), while for the faint population (L = 0.2L*) the limit to the escape fraction is less than or similar to 10%. We computed the contribution of star-forming galaxies to the observed UV background at z similar to 3 and find that it is not sufficient to keep the Universe ionized at these redshifts unless their escape fraction increases significantly (>= 10%) at low luminosities (M-1500 >= -19). Conclusions. We compare our results on the Lyman continuum escape fraction of high-z galaxies with recent estimates in the literature, and discuss future prospects to shed light on the end of the Dark Ages. In the future, strong gravitational lensing will be fundamental in order to measure the Lyman continuum escape fraction down to faint magnitudes (M-1500 similar to -16) that are inaccessible with the present instrumentation on blank fields. These results will be important in order to quantify the role of faint galaxies to the reionization budget.
|
7 |
The Diversity of Diffuse Ly α Nebulae around Star-forming Galaxies at High RedshiftXue, Rui, Lee, Kyoung-Soo, Dey, Arjun, Reddy, Naveen, Hong, Sungryong, Prescott, Moire K. M., Inami, Hanae, Jannuzi, Buell T., Gonzalez, Anthony H. 15 March 2017 (has links)
We report the detection of diffuse Ly alpha emission, or Lya halos (LAHs), around star-forming galaxies at z approximate to 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Bootes field. Our samples consist of a total of similar to 1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly alpha images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly alpha radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Ly alpha luminosities, but not on Ly alpha equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Lya emitters (M-UV greater than or similar to -21), exhibit LAH sizes of 5-6 kpc. However, the most UV- or Ly alpha-luminous galaxies have more extended halos with scale-lengths of 7-9 kpc. The stacked Ly alpha radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H I column density, and outflow velocity) change with halo mass and/or star formation rates.
|
8 |
CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIESBalestra, I., Mercurio, A., Sartoris, B., Girardi, M., Grillo, C., Nonino, M., Rosati, P., Biviano, A., Ettori, S., Forman, W., Jones, C., Koekemoer, A., Medezinski, E., Merten, J., Ogrean, G. A., Tozzi, P., Umetsu, K., Vanzella, E., Weeren, R. J. van, Zitrin, A., Annunziatella, M., Caminha, G. B., Broadhurst, T., Coe, D., Donahue, M., Fritz, A., Frye, B., Kelson, D., Lombardi, M., Maier, C., Meneghetti, M., Monna, A., Postman, M., Scodeggio, M., Seitz, S., Ziegler, B. 08 June 2016 (has links)
We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS. J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over similar to 600 arcmin(2), including similar to 800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to similar to 2.2 r(200) (similar to 4Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M-200 similar to 0.9 x 10(15) M-circle dot and sigma(V r200) similar to 1000 km s(-1)) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Delta V-rf similar to 1100 km s(-1) with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent sub-clump similar to 600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z similar to 0.390, similar to 10' south of the cluster center, projected at similar to 3Mpc, with a relative line-of-sight velocity of Delta V-rf similar to 1700 km s(-1). The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources.
|
9 |
MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATALeistedt, B., Peiris, H. V., Elsner, F., Benoit-Lévy, A., Amara, A., Bauer, A. H., Becker, M. R., Bonnett, C., Bruderer, C., Busha, M. T., Kind, M. Carrasco, Chang, C., Crocce, M., da Costa, L. N., Gaztanaga, E., Huff, E. M., Lahav, O., Palmese, A., Percival, W. J., Refregier, A., Ross, A. J., Rozo, E., Rykoff, E. S., Sánchez, C., Sadeh, I., Sevilla-Noarbe, I., Sobreira, F., Suchyta, E., Swanson, M. E. C., Wechsler, R. H., Abdalla, F. B., Allam, S., Banerji, M., Bernstein, G. M., Bernstein, R. A., Bertin, E., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., Cunha, C. E., D’Andrea, C. B., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Evrard, A. E., Neto, A. Fausti, Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., James, D. J., Jarvis, M., Kent, S., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Nichol, R. C., Nord, B., Ogando, R., Plazas, A. A., Reil, K., Romer, A. K., Roodman, A., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Smith, R. C., Soares-Santos, M., Tarle, G., Thaler, J., Thomas, D., Vikram, V., Walker, A. R., Wester, W., Zhang, Y., Zuntz, J. 17 October 2016 (has links)
Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.
|
10 |
SPECTROSCOPIC CONFIRMATION OF A PROTOCLUSTER AT z ≈ 3.786Dey, Arjun, Lee, Kyoung-Soo, Reddy, Naveen, Cooper, Michael, Inami, Hanae, Hong, Sungryong, Gonzalez, Anthony H., Jannuzi, Buell T. 16 May 2016 (has links)
We present new observations of the field containing the z = 3.786 protocluster PC 217.96+ 32.3. We confirm that it is one of the largest known and most overdense high-redshift structures. Such structures are rare even in the largest cosmological simulations. We used the Mayall/MOSAIC1.1 imaging camera to image a 1 degrees.2 x 0 degrees.6 area (approximate to 150 x 75 comoving Mpc) surrounding the protocluster's core and discovered 165 candidate Ly alpha emitting galaxies (LAEs) and 788 candidate Lyman Break galaxies (LBGs). There are at least two overdense regions traced by the LAEs, the largest of which shows an areal overdensity in its core (i. e., within a radius of 2.5 comoving Mpc) of 14 +/- 7 relative to the average LAE spatial density ((rho) over bar) in the imaged field. Further, (rho) over bar is twice that derived by other field LAE surveys. Spectroscopy with Keck/DEIMOS yielded redshifts for 164 galaxies (79 LAEs and 85 LBGs); 65 lie at a redshift of 3.785 +/- 0.010. The velocity dispersion of galaxies near the core is sigma = 350 +/- 40 km s(-1), a value robust to selection effects. The overdensities are likely to collapse into systems with present-day masses of > 10(15)M(circle dot) and > 6 x 10(14)M(circle dot) The low velocity dispersion may suggest a dynamically young protocluster. We find a weak trend between narrow-band (Ly alpha) luminosity and environmental density: the Ly alpha luminosity is enhanced on average by 1.35x within the protocluster core. There is no evidence that the Ly alpha equivalent width depends on environment. These suggest that star formation and/or active galactic nucleus (AGN) activity is enhanced in the higher-density regions of the structure. PC. 217.96+ 32.3 is a Coma cluster analog, witnessed in the process of formation.
|
Page generated in 0.0972 seconds