• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 4
  • 4
  • 3
  • Tagged with
  • 73
  • 73
  • 38
  • 35
  • 28
  • 26
  • 21
  • 17
  • 16
  • 15
  • 13
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The intergalactic medium: absorption, emission, disruption

Kollmeier, Juna Ariele 19 September 2006 (has links)
No description available.
52

Cold Flows in Galaxy Formation

Woods, Rory M. 10 1900 (has links)
<p>We present a numerical study of gas accretion into galaxies using the SPH code, Gasoline. Numerical tests on shock treatment in Gasoline are run to evaluate how well cosmological-scale, high Mach number shocks are treated. We find that shock solutions are far too noisy, and in specific density and metallicity regimes, this seeds a phase separation instability of hot and cold gas. We propose this instability as the source of cold blobs seen in many numerical simulations. We find that improved shock behavior is primarily attained through increased viscosity parameters. Analysis is also performed on four cosmological simulations from the McMaster Unbiased Galaxy Simulations (MUGS) (Stinson et al. 2010). In agreement with recent literature, we find cold flows of gas seeded by dark matter filaments stretching far into the inner galaxy in all analyzed galaxies. Tracking of star and gas particles is performed, and we find that cold mode accretion makes up between 40% and 60% of total gas accretion. As well, we find that cold gas is in general very quickly formed into stars, and that between 40% and 70% of total star mass comes from cold gas accretion.</p> / Master of Science (MSc)
53

Superbubble Feedback in Galaxy Evolution

Keller, Benjamin January 2017 (has links)
Galaxy formation is a complex, nonlinear process that occurs over scales that span orders of magnitude in space and time. Of the many phenomena taking place within a galaxy, supernovae (SN) are among the most important. SN heat, stir, and eject gas from the galaxy. This has profound impact on the galaxy's evolution over cosmic time. Numerical simulations of galaxies must often include models for feedback from SN. We present a new model for SN feedback that captures the effects of previously ignored physics: thermal conduction. Massive stars form in clusters, allowing their SN ejecta to merge into a superbubble, which can vent from the disc to drive a high-entropy galactic outflow. Thermal conduction determines how much mass is mixed into this superbubble. We use this to study SN feedback in galaxy evolution, and come to four major conclusions. First, superbubbles drive stronger galactic outflows in compared to past models of SN feedback. Second, these outflows are key to both preventing the overproduction of stars and the formation of too-massive central bulges. High redshift outflows eject starforming gas, and preferentially remove bulge forming gas. Third, we show that SN cannot prevent runaway star formation in galaxies more massive than our own $(M_{halo}>10^{12}\;\rm{M_\odot})$. In these galaxies, SN are unable to prevent transport of gas towards the centre of the galaxy. These results suggest a transition between regulation from stars to regulation from supermassive black holes occurs at roughly this mass. Finally, we use our simulated galaxies to show recent observations of the Radial Acceleration Relation (RAR) are consistent with $\Lambda$CDM cosmology. The RAR ties galaxy kinematics to baryonic mass, in a tight, universal scaling relation. While this has been claimed as potential evidence of exotic new physics, we show this same tight relation occurs for galaxies formed in $\Lambda$CDM. / Thesis / Doctor of Philosophy (PhD)
54

Early-type disk galaxies

Williams, Michael J. January 2011 (has links)
In this thesis I investigate the dynamics and stellar populations of a sample of 28 edge-on early-type (S0--Sb) disk galaxies, 22 of which host a boxy or peanut-shaped bulge. I begin by constructing mass models of the galaxies based on their observed photometry and stellar kinematics. Subject to cosmologically motivated assumptions about the shape of dark haloes, I measure in a purely dynamical way their stellar and dark masses. I make a preliminary comparison between the dynamically determined stellar masses and those predicted by stellar population models. I then compare the Tully-Fisher (luminosity--velocity) relations of the spirals and S0s in the sample. I show that S0s are systematically fainter at a given rotational velocity, but the amount by which they are fainter is less than expected by models in which they are the products of truncation of star formation in spirals. This raises the possibility that S0s are smaller or more concentrated than spirals of the same mass. I then study the vertical structure of the boxy and peanut-shaped bulges of a subset of the sample. Among this sample of five galaxies, I find one example in which the stellar populations show no evidence that the bulge and the disk formed in different processes, and in which the bulge is in perfectly cylindrical rotation, i.e. its line-of-sight velocity does not change with height above the disk. This galaxy is probably a pure disk galaxy. However, even with this small sample, I also show that cylindrical rotation and homogeneous stellar populations are not ubiquitous properties of boxy and peanut-shaped bulges. Finally I analyse central and radial trends in the stellar populations of the bulges of full sample of 28 galaxies. I find that, at a given velocity dispersion, the central stellar populations of these barred early-type disk galaxies are identical to those of elliptical galaxies, which suggests that secular evolution does not dominate the centre of these galaxies. However, the radial metallicity gradients are shallower than those of ellipticals. This is qualitatively consistent with chemodynamical models of bar formation, in which radial inflow and outflow smears out pre-existing gradients.
55

Spatially-resolved studies of nearby star-forming galaxies

Kumari, Nimisha January 2018 (has links)
Spatially-resolved studies of nearby star-forming galaxies are essential to understand various physical and chemical phenomena at play in the interstellar medium in the galaxies, and consequently to obtain a comprehensive picture of galaxy formation and evolution. In this thesis, I perform spatially-resolved analyses of chemical abundances and star-formation in nearby star-forming galaxies - blue compact dwarf galaxies (BCDs) and spiral galaxies. I map various properties of H II regions and the surrounding gas within three BCDs, using integral field spectroscopic (IFS) data from the Gemini Multi-Object Spectrograph-North. While answering questions related to chemical homogeneity, ionisation mechanisms and stellar populations within BCDs, I address more profound issues, which go beyond the characterisation of studied BCDs and aim to explain global phenomena with broader implications. The BCD NGC 4449 hosts a metal-poor central star-forming region, which I explain by various scenarios related to the interplay between star-formation, metal-distribution and gas dynamics within galaxies. The BCD NGC 4670 shows an unusual negative relationship between the nitrogen-to-oxygen ratio and oxygen abundance at spatially-resolved scales. I explore this relation with chemical evolution models and by comparison to other star-forming galaxies and suggest that nitrogen enrichment, variations in star-formation efficiency or hydrodynamical effects may be responsible for the observed relation. For another BCD, SBS 1415+437, the spatially-resolved abundances on average agree with the integrated abundance, implying that low-redshift spatially-resolved results may be directly compared with unresolved high-redshift results. I study spiral galaxies to address long-standing issues related to the reliability of metallicity calibrators and the Schmidt Law of star-formation. Using IFS data of twenty-four spiral galaxies taken with the Multi-Unit Spectroscopic Explorer, I find that the current strong-line metallicity calibrators for H II regions are unsuitable for regions dominated by diffuse ionised gas (DIG). I devise new recipes for estimating the metal-content of the DIG. For another set of nine spiral galaxies, I use multi-wavelength data to show that the spatially-resolved Schmidt relation is very sensitive to the consideration of diffuse background, which is a component unrelated to the current star-formation. Removal of this component from the SFR tracers and the atomic gas results in similar local and global Schmidt relation. To conclude, the spatially-resolved analyses presented in this thesis have led to discoveries and further questions, which I will address in my ongoing and future works.
56

The structure and substructure of cold dark matter halos

Ludlow, Aaron D. 04 January 2009 (has links)
We study the structure and substructure of Lambda-CDM halos using a suite of high-resolution cosmological N-body simulations. Our analysis of the substructure population of dark matter halos focuses on their mass and peak circular velocity functions, as well as their spatial distribution and dynamics. In our analysis, we consider the whole population of subhalos physically associated with the main halo, defined as those that have, at some time, crossed within the virial radius of the main progenitor. We find that this population extends beyond 3 times the virial radius and includes objects on unorthodox orbits, several of which travel at velocities approaching the nominal escape speed from the system. We trace the origin of these unorthodox orbits to the tidal dissociation of bound groups, which results in the ejection of some systems along tidal streams. This process primarily influences low-mass systems leading to clear mass-dependent biases in their spatial distribution and kinematics: the lower the subhalo mass at accretion time the more concentrated and kinematically hotter their descendant population. When quantified in terms of present day subhalo mass these trends disappear, presumably due to the increased effect of dynamical friction and tidal stripping on massive systems. We confirm several of these results using the ultra-high resolution Aquarius simulations, which extend the dynamic range of the subhalo mass function by nearly 3 orders of magnitude. Using these simulations we confirm that the substructure mass function follows a power-law, $dN/dM\propto M^{-1.9}$, and exhibits very little halo-to-halo scatter. This implies that the total mass in substructure within a given halo is bounded to a small fraction of the total halo mass, with the smooth component dominating the halo inner regions. Using the Aquarius simulations we study the structure of galaxy-sized Lambda-CDM halos. We find that the spherically averaged density profiles become increasingly shallow toward the halo center, with no sign of converging to an asymptotic power-law; a radial dependence accurately described by the Einasto profile. In our highest resolution run we resolve scales approaching 100 pc, at which point the maximum asymptotic slope is $\approx -0.89$, confidently ruling out recent claims for cusps as steep as $r^{-1.2}$. We find that the spherically averaged density and velocity dispersion profiles are not universal, but rather show subtle but significant deviations from self-similarity. Intriguingly, departures from self-similarity are minimized when cast in terms of the phase-space density profile, $\rho/\sigma^3$, suggesting an intimate scaling between densities and velocity dispersions across the system. The phase-space density profiles follow a power-law with radius, $r^{-1.875}$, identical to that of Bertschinger's similarity solution for self-similar infall onto a point mass in an otherwise unperturbed Einstein-de Sitter universe.
57

The structure and substructure of cold dark matter halos

Ludlow, Aaron D. 04 January 2009 (has links)
We study the structure and substructure of Lambda-CDM halos using a suite of high-resolution cosmological N-body simulations. Our analysis of the substructure population of dark matter halos focuses on their mass and peak circular velocity functions, as well as their spatial distribution and dynamics. In our analysis, we consider the whole population of subhalos physically associated with the main halo, defined as those that have, at some time, crossed within the virial radius of the main progenitor. We find that this population extends beyond 3 times the virial radius and includes objects on unorthodox orbits, several of which travel at velocities approaching the nominal escape speed from the system. We trace the origin of these unorthodox orbits to the tidal dissociation of bound groups, which results in the ejection of some systems along tidal streams. This process primarily influences low-mass systems leading to clear mass-dependent biases in their spatial distribution and kinematics: the lower the subhalo mass at accretion time the more concentrated and kinematically hotter their descendant population. When quantified in terms of present day subhalo mass these trends disappear, presumably due to the increased effect of dynamical friction and tidal stripping on massive systems. We confirm several of these results using the ultra-high resolution Aquarius simulations, which extend the dynamic range of the subhalo mass function by nearly 3 orders of magnitude. Using these simulations we confirm that the substructure mass function follows a power-law, $dN/dM\propto M^{-1.9}$, and exhibits very little halo-to-halo scatter. This implies that the total mass in substructure within a given halo is bounded to a small fraction of the total halo mass, with the smooth component dominating the halo inner regions. Using the Aquarius simulations we study the structure of galaxy-sized Lambda-CDM halos. We find that the spherically averaged density profiles become increasingly shallow toward the halo center, with no sign of converging to an asymptotic power-law; a radial dependence accurately described by the Einasto profile. In our highest resolution run we resolve scales approaching 100 pc, at which point the maximum asymptotic slope is $\approx -0.89$, confidently ruling out recent claims for cusps as steep as $r^{-1.2}$. We find that the spherically averaged density and velocity dispersion profiles are not universal, but rather show subtle but significant deviations from self-similarity. Intriguingly, departures from self-similarity are minimized when cast in terms of the phase-space density profile, $\rho/\sigma^3$, suggesting an intimate scaling between densities and velocity dispersions across the system. The phase-space density profiles follow a power-law with radius, $r^{-1.875}$, identical to that of Bertschinger's similarity solution for self-similar infall onto a point mass in an otherwise unperturbed Einstein-de Sitter universe.
58

Simulations cosmologiques et astroparticules : formation de galaxies spirales : détection directe et indirecte de la matière noire / Cosmological simulations and astroparticles : formation of spiral galaxies : direct and indirect detection of dark matter.

Mollitor, Pol 10 December 2014 (has links)
Deux problématiques sont abordées dans cette thèse: la formation de galaxies spirales et la détection de la matière noire (MN).Nous étudions trois simulations cosmologiques hydrodynamiques de haute résolution zoomées sur des halos de propriétés similaires à celui de la Voie Lactée que nous réalisons avec le code à grille adaptative RAMSES. Nous analysons les distributions d'étoiles et de gaz et constatons qu'une de nos galaxies simulées possèdent des propriétés intéressantes par rapport à la Voie Lactée. Nous obtenons un disque stellaire étendu et une courbe de rotation plate avec la vitesse de rotation et la densité locale de MN en accord avec les observations. En ce qui concerne la distribution de MN, nous analysons l'interaction avec les baryons et nous montrons explicitement comment le profil de densité de MN est aplatie par les processus de feedback.Dans le cadre de cette simulation, nous étudions les incertitudes astrophysiques sur la détection directe en analysant les quantités importantes comme la densité locale de MN, sa distribution de vitesse et la vitesse d'échappement locale. De plus, nous considérons plusieurs sélections de distribution de MN et d'étoiles et estimons ainsi la variabilité du taux de détection.Dans le cadre cohérent de la simulation, nous calculons les signaux d'annihilation et de désintégration de MN en rayons gamma ainsi que le fond diffus, que nous modélisons en utilisant les explosions de supernovae comme sources de rayons cosmiques qui produisent les rayons gamma par spallation sur la distribution de gaz. Les configurations de la matière noire et des baryons induisent une situation défavorable à la détection indirecte de la MN. / The thesis tackles two topics: the formation of spiral galaxies and the detection of dark matter (DM).We study three high resolution cosmological hydrodynamical simulations of Milky Way-sized halos including a comparison with the corresponding DM-only runs performed with the code RAMSES. We analyze the stellar and gas distribution and find one of our simulated galaxies with interesting Milky Way like features with regard to several observational tests. We obtain an extended disk and a flat rotation curve with a circular velocity and a DM density in the solar neighborhood that are in agreement with observations. Following observational procedures, we rederive the stellar-to-halo mass ratio and obtain competitive values for this criterion. Concerning the DM distribution, we explicitly show the interaction with the baryons and show how the DM is first contracted by star formation and then cored by feedback processes.In the framework of the simulation, we analyze the astrophysical uncertainties relevant for direct detection by studying the involved quantities like the local DM density, the DM velocity distribution and the local escape velocity . Furthermore, we consider various selections of DM and star distributions and estimate the variability of the detection rate.Within the self-consistent framework of the simulation, we calculate the DM annihilation and decay gamma ray (GR) signals as well as the diffuse GR background, that we model using the supernovae explosions as cosmic ray sources which produce GRs by spallation on the gas distribution. The cored DM profile and the high central baryonic densities induce a challenging configuration for indirect DM detection.
59

Spectroscopic analysis of primeval galaxy candidates

Caruana, Joseph January 2013 (has links)
This thesis presents spectroscopic observations of z ≥ 7 galaxy candidates in the Hubble Ultra Deep Field, which were selected with HST WFC3 imaging, using the Lyman-Break technique. Four z-band (z ≈ 7) dropout galaxies were targeted with Gemini/GNIRS, one z-band dropout galaxy and three Y -band (z ≈ 8 − 9) dropout galaxies with VLT/XSHOOTER, and 22 z-band dropouts with VLT/FORS2, where 15 of the latter are strong candidates. No evidence of Lyman-α emission is found, and the upper limits on the Lyman-α flux and the broad-band magnitudes are used to constrain the rest-frame equivalent widths for this line emission. Amongst the targeted objects, observations were made of HUDF.YD3, a relatively bright Y -band dropout galaxy likely to be at z ≈ 8 − 9 on the basis of its colours in the HST ACS and WFC3 images. Lehnert et al. (2010) observed this galaxy using the VLT/SINFONI integral field spectrograph and claim that it exhibits Lyman-α emission at z = 8.55. In observations of this object described in this thesis, which were made with VLT/XSHOOTER and Subaru/MOIRCS, this line was not reproduced despite the expected signal in the combined MOIRCS & XSHOOTER data being 5σ. Hence it appears unlikely that the reported Lyman-α line emission at z > 8 is real. Accounting for incomplete spectral coverage, in total (across all spectro- graphs) 9.63 z-band dropouts and 1.15 Y -band dropouts are surveyed to a Lyman-α rest-frame Equivalent Width better than 75 ̊A. A model where the fraction of high rest-frame equivalent width emitters follows the trend seen at z = 3−6.5 is inconsistent with these non-detections at z = 7−9 at a confidence level of ∼ 91%, which may indicate that a significant neutral HI fraction (χHI) in the intergalactic medium suppresses the Lyman-α line at z > 7. In particular, the lack of detection of Lyman-α emission in this spectroscopy is compared with results at lower redshift by Stark et al. (2010), who derive a mapping between Lyman-α fractions and χHI based on radiative transfer simulations by McQuinn et al. (2007). These results suggest a lower limit of χHI ~ 0.5.
60

Les halos Lyman alpha des galaxies distantes vus par MUSE : étude du milieu circum-galactique / Lyman alpha haloes of distant galaxies revealed by MUSE : analysis of the circum-galactic medium

Leclercq, Floriane 09 November 2017 (has links)
Le milieu circum-galactique (CGM pour "Circum-Galactic Medium" en anglais) constitue l'interface entre les galaxies et les grandes structures au sein desquelles elles évoluent. Le milieu inter-galactique est principalement composé de gaz d'hydrogène froid, dit primordial, qui en s'accretant sur les galaxies constitue le carburant de la formation stellaire. La formation stellaire apparait alors régulée par les échanges de matière entre la galaxie et l'extérieur. En ce sens, l'étude de l'environnement des galaxies se révèle cruciale pour comprendre les mécanismes qui régissent leur formation et leur évolution. L'observation directe du CGM est toutefois assez délicate en raison de la chute de brillance des galaxies dans leurs régions externes. Sa détection est d'autant plus difficile pour les galaxies de l'Univers lointain. Quelques techniques existent pour contrecarrer cette difficulté : l'observation du CGM en absorption dans le spectre d'un quasar brillant situe sur la ligne de visée de la galaxie, ou sa détection statistique en combinant de nombreuses images de galaxies. Ces techniques ont toutefois de sévères limitations car elles ne donnent que des informations parcellaires sur le CGM. Je rapporte dans cette thèse la détection de gaz d'hydrogène froid autour de 145 galaxies (soit 80% des galaxies testees) peu massives, peu lumineuses et très distantes, émettant de l'émission Lyα. Longtemps utilisée pour son pouvoir de détection des galaxies lointaines, l'émission Lyα est maintenant utilisée comme un traceur du gaz froid du CGM, alors observable sous forme de "halos" Lyα. Notre échantillon constitue le plus grand échantillon de halos Lyα détectés individuellement autour de galaxies de faible masse et ce, à une époque pendant laquelle l'Univers est en pleine construction. Ces avancées ont été rendues possible grâce à l'incomparable sensibilité de l'instrument MUSE installé sur le "Very Large Telescope" au Chili il y a bientôt 4 ans. Seule une centaine d'heures de télescope dans la région du champ ultra profond de Hubble ont été nécessaires pour permettre la détection de halos Lyα. Nos résultats confirment la présence de grande quantité de gaz froid dans l'environnement immédiat des galaxies distantes. Ces observations étaient en effet prédites par les modèles théoriques et les simulations numériques. En plus d'être quasi-omniprésents autour des galaxies, les halos Lyα observés montrent une diversité (taille, flux, forme, profil de la raie d'émission, etc) particulièrement remarquable dans une région du ciel si restreinte (9_×9_). De plus, la possibilité d'analyser le CGM galaxie par galaxie et en trois dimensions permet maintenant d'étudier de manière directe l'impact de l'environnement sur la galaxie mais aussi l'évolution des propriétés du CGM avec les époques cosmiques. Notre grand échantillon de galaxies nous a permis de réaliser un traitement statistique robuste et de mettre en évidence que les propriétés stellaires des galaxies étudiées ne sont pas systématiquement liées à celles de l'émission Lyα. Enfin, d'après les modèles théoriques, nos observations (spectroscopiques) indiquent la présence de matière en expansion dans et/ou autour des galaxies. La présence d'accrétion de matière est, quant à elle, moins bien contrainte par nos données. Finalement, l'analyse décrite dans ce manuscrit rapporte des informations importantes et inédites sur les propriétés du CGM d'une population de galaxies relativement peu lumineuses et très abondantes dans l'Univers lointain / The circum-galactic medium (CGM) serves as the interface between galaxies and the larger structures within which they evolve. Composed primarily of cold hydrogen gas (also called primordial gas), the CGM is a major fuel source for star formation as material falls onto a galaxy from its surrounding halo. This suggests that star formation is in fact regulated by gas exchange between a galaxy and its vicinity. Thus, studying the surrounding environment of galaxies represents a crucial step in understanding the mechanisms governing their formation and evolution. Unfortunately, direct observation of the CGM is often quite difficult, since these regions are very faint. This task becomes even more challenging for galaxies in the distant Universe, though some techniques have been developed for this purpose. The CGM can be detected through absorption features in the spectrum of a more-distant quasar located along a galaxy’s line of sight or statistically, by stacking many images of galaxies together, in order to increase the overall S/N ratio of the sample. However, these methods are not ideal : both have severe limitations and only provide partial information about the CGM. In this thesis, I report the detection of cold hydrogen gas surrounding 145 low-mass, faint and very distant galaxies emitting Lyα photons (forming 80% of the total galaxy sample used in this work). While historically, Lyα emission was seen simply as a powerful tool for detecting distant galaxies, it is now possible to use it as a tracer of cold CGM gas in the form of Lyα halos. The sample presented here represents the largest collection ever compiled of individually-detected Lyα halos around normal star forming galaxies, observed in an epoch when the Universe was still forming. This achievement is possible thanks to the unrivaled sensitivity of the Multi-Unit Spectroscopic Explorer (MUSE), a next-generation instrument installed on the Very Large Telescope (VLT). In particular, we need only 100 hours of telescope time to detect the presence of Lyα halos, a significant improvement over previous efforts. My results confirm the presence of large amounts of cold gas in the immediate vicinity of distant galaxies. While such results have been predicted by theoretical models and numerical simulations, this work provides some of the first direct observational evidence of this fact. Besides being quasi-ubiquitous around galaxies, the observed Lyα halos show a large diversity in physical properties which is particularly remarkable for such a small region of the sky (9_×9_). Moreover, the 3D galaxy-by-galaxy nature of my analysis allows me to study the direct impact of environment on galaxies, as well as the evolution of the CGM with cosmic time. With such a large sample, I am also able to perform a robust statistical analysis, highlighting the fact that the stellar properties of galaxies are not systematically linked to the Lyα ones. Finally, based on theoretical models, my (spectroscopic) observations indicate the presence of expanding materials inside and/or around the galaxies. However, the presence of galactic inflows are less constrained by the data. Taken as a whole, the analysis described in this thesis represents important, new information about the CGM properties of the relatively faint galaxies which make up the bulk of the galaxy population in the distant Universe. Therefore, this work should serve as a useful reference point as research into the CGM continues to advance

Page generated in 0.1051 seconds