• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 12
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adaptive Large Eddy Simulations based on discontinuous Galerkin methods / Simulation adaptative des grandes échelles d'écoulements turbulents fondée sur une méthode Galerkine discontinue

Naddei, Fabio 08 October 2019 (has links)
L'objectif principal de ce travail est d'améliorer la précision et l'efficacité des modèles LES au moyen des méthodes Galerkine discontinues (DG). Deux thématiques principales ont été étudiées: les stratégies d'adaptation spatiale et les modèles LES pour les méthodes d'ordre élevé.Concernant le premier thème, dans le cadre des méthodes DG la résolution spatiale peut être efficacement adaptée en modifiant localement soit le maillage (adaptation-h) soit le degré polynômial de la solution (adaptation-p). L'adaptation automatique de la résolution nécessite l'estimation des erreurs pour analyser la qualité de la solution locale et les exigences de résolution. L'efficacité de différentes stratégies de la littérature est comparée en effectuant des simulations h- et p-adaptatives.Sur la base de cette étude comparative, des algorithmes statiques et dynamiques p-adaptatifs pour la simulation des écoulements instationnaires sont ensuite développés et analysés. Les simulations numériques réalisées montrent que les algorithmes proposés peuvent réduire le coût de calcul des simulations des écoulements transitoires et statistiquement stationnaires.Un nouvel estimateur d'erreur est ensuite proposé. Il est local, car n'exige que des informations de l'élément et de ses voisins directs, et peut être calculé en cours de simulation pour un coût limité. Il est démontré que l'algorithme statique p-adaptatif basé sur cet estimateur d'erreur peut être utilisé pour améliorer la précision des simulations LES sur des écoulements turbulents statistiquement stationnaires.Concernant le second thème, une nouvelle méthode, consistante avec la discrétisation DG, est développée pour l'analyse a-priori des modèles DG-LES à partir des données DNS. Elle permet d'identifier le transfert d'énergie idéal entre les échelles résolues et non résolues. Cette méthode est appliquée à l'analyse de l'approche VMS (Variational Multiscale). Il est démontré que pour les résolutions fines, l'approche DG-VMS est capable de reproduire le transfert d'énergie idéal. Cependant, pour les résolutions grossières, typique de la LES à nombres de Reynolds élevés, un meilleur accord peut être obtenu en utilisant un modèle mixte Smagorinsky-VMS. / The main goal of this work is to improve the accuracy and computational efficiency of Large Eddy Simulations (LES) by means of discontinuous Galerkin (DG) methods. To this end, two main research topics have been investigated: resolution adaptation strategies and LES models for high-order methods.As regards the first topic, in the framework of DG methods the spatial resolution can be efficiently adapted by modifying either the local mesh size (h-adaptation) or the degree of the polynomial representation of the solution (p-adaptation).The automatic resolution adaptation requires the definition of an error estimation strategy to analyse the local solution quality and resolution requirements.The efficiency of several strategies derived from the literature are compared by performing p- and h-adaptive simulations. Based on this comparative study a suitable error indicator for the adaptive scale-resolving simulations is selected.Both static and dynamic p-adaptive algorithms for the simulation of unsteady flows are then developed and analysed. It is demonstrated by numerical simulations that the proposed algorithms can provide a reduction of the computational cost for the simulation of both transient and statistically steady flows.A novel error estimation strategy is then introduced. It is local, requiring only information from the element and direct neighbours, and can be computed at run-time with limited overhead. It is shown that the static p-adaptive algorithm based on this error estimator can be employed to improve the accuracy for LES of statistically steady turbulent flows.As regards the second topic, a novel framework consistent with the DG discretization is developed for the a-priori analysis of DG-LES models from DNS databases. It allows to identify the ideal energy transfer mechanism between resolved and unresolved scales.This approach is applied for the analysis of the DG Variational Multiscale (VMS) approach. It is shown that, for fine resolutions, the DG-VMS approach is able to replicate the ideal energy transfer mechanism.However, for coarse resolutions, typical of LES at high Reynolds numbers, a more accurate agreement is obtained by a mixed Smagorinsky-VMS model.
12

Propagation des ondes dans un domaine comportant des petites hétérogénéités : modélisation asymptotique et calcul numérique / Small heterogeneities in the context of time-domain wave propagation equation : asymptotic analysis and numerical calculation

Mattesi, Vanessa 11 December 2014 (has links)
Dans cette thèse, nous nous intéressons à la modélisation mathématique des hétérogénéités de longueurs caractéristiques beaucoup plus petites que la longueur d'ondes. La thèse consiste en deux parties. La partie théorique est dédiée à l'obtention d'un développement asymptotique raccordé: la solution est décrite à l'aide d'un développement de champ proche au voisinage de l'obstacle et par un développement de champ lointain hors de ce voisinage. Le développement de champ lointain met en jeu des solutions singulières de l'équation des ondes tandis que le champ proche lui est régi par un modèle quasi-statique. Ces deux développements sont alors raccordés dans une zone intermédiaire dite de raccord. Nous obtenons alors des estimations d'erreurs permettant de rendre rigoureux ce développement asymptotique formel. La deuxième partie est numérique. Elle décrit à la fois la méthode de Galerkine discontinue, une méthode de raffinement de maillage espace-temps et propose une discrétisation des modèles asymptotiques obtenues précédemment. Elle est illustrée par un certain nombre de tests numériques. / In this thesis, we focus our attention on the modeling of heterogeneities which are smaller than the wavelength. The document is decomposed into two parts : a theoretical one and a numerical one. In the first part, we derive a matched asymptotic expansion composed of a far-field expansion and a near-field expansion. The terms of the far-field expansion are singular solutions of the wave equation whereas the terms of the near-field expansion satisfy quasistatic problems. These expansions are matched in an intermediate region. We justify mathematically this theory by proving error estimates. In the second part, we describe the Discontinuous Galerkin method, a local time stepping method and the implementation of the matched asymptotic method. Numerical simulations illustrate these results.
13

Méthodes Galerkine discontinues localement implicites en domaine temporel pour la propagation des ondes électromagnétiques dans les tissus biologiques / Locally implicit discontinuous Galerkin time-domain methods for electromagnetic wave propagation in biological tissues

Moya, Ludovic 16 December 2013 (has links)
Cette thèse traite des équations de Maxwell en domaine temporel. Le principal objectif est de proposer des méthodes de type éléments finis d'ordre élevé pour les équations de Maxwell et des schémas d'intégration en temps efficaces sur des maillages localement raffinés. Nous considérons des méthodes GDDT (Galerkine Discontinues en Domaine Temporel) s'appuyant sur une interpolation polynomiale d'ordre arbitrairement élevé des composantes du champ électromagnétique. Les méthodes GDDT pour les équations de Maxwell s'appuient le plus souvent sur des schémas d'intégration en temps explicites dont la condition de stabilité peut être très restrictive pour des maillages raffinés. Pour surmonter cette limitation, nous considérons des schémas en temps qui consistent à appliquer un schéma implicite localement, dans les régions raffinées, tout en préservant un schéma explicite sur le reste du maillage. Nous présentons une étude théorique complète et une comparaison de deux méthodes GDDT localement implicites. Des expériences numériques en 2D et 3D illustrent l'utilité des schémas proposés. Le traitement numérique de milieux de propagation complexes est également l'un des objectifs. Nous considérons l'interaction des ondes électromagnétiques avec les tissus biologiques qui est au cœur de nombreuses applications dans le domaine biomédical. La modélisation numérique nécessite alors de résoudre le système de Maxwell avec des modèles appropriés de dispersion. Nous formulons une méthode GDDT localement implicite pour le modèle de Debye et proposons une analyse théorique et numérique complète du schéma. / This work deals with the time-domain formulation of Maxwell's equations. The main objective is to propose high-order finite element type methods for the discretization of Maxwell's equations and efficient time integration methods on locally refined meshes. We consider Discontinuous Galerkin Time-Domain (DGTD) methods relying on an arbitrary high-order polynomial interpolation of the components of the electromagnetic field. Existing DGTD methods for Maxwell's equations often rely on explicit time integration schemes and are constrained by a stability condition that can be very restrictive on highly refined meshes. To overcome this limitation, we consider time integration schemes that consist in applying an implicit scheme locally i.e. in the refined regions of the mesh, while preserving an explicit scheme in the complementary part. We present a full theoretical study and a comparison of two locally implicit DGTD methods. Numerical experiments for 2D and 3D problems illustrate the usefulness of the proposed time integration schemes. The numerical treatment of complex propagation media is also one of the objectives. We consider the interaction of electromagnetic waves with biological tissues that is of interest to applications in biomedical domain. Numerical modeling then requires to solve the system of Maxwell's equations coupled to appropriate models of physical dispersion. We derive a locally implicit DGTD method for the Debye model and we achieve a full theoretical and numerical analysis of the resulting scheme.

Page generated in 0.0584 seconds