• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corrosion aspects in indirect systems with secondary refrigerants

Ignatowicz, Monika January 2008 (has links)
Aqueous solutions of organic or inorganic salts are used as secondary refrigerants in indirect refrigeration systems to transport and transfer heat. Water is known for its corrosive character and secondary refrigerants based on aqueous solutions have the same tendency. The least corrosive from the aqueous solutions are glycols and alcohols. Salt solutions, such as chlorides and potassium salts, are much more corrosive. Nevertheless, it is possible to minimize corrosion risks at the beginning stage while designing system. Proper design can significantly help in improving system performance against corrosion. There are several aspects which need to be taken into account while working with secondary refrigerants: design of system, selection of secondary refrigerant, proper corrosion inhibitors, compatible materials used to build the installation and proper preparation of system to operation. While choosing proper materials it is advised to avoid the formation of a galvanic couple to reduce the risk of the most dangerous type of corrosion. Oxygen present in installation is another important factor increasing the rate of corrosion. Even small amounts of oxygen can significantly affect the system lifetime. The methods of cleaning, charging the system with refrigerant, and deaeration procedures are extremely important. The purpose of this thesis work is to present the problems of corrosion occurring in the indirect systems with secondary refrigerants. The thesis describes the mechanism of corrosion and its different types, most commonly used materials in installation, different corrosion inhibitors used to protect system. This thesis also lists the available secondary refrigerants on the market and briefly describes them. Further, it describes the important aspects related with designing, preparing and maintaining of indirect systems. This thesis is giving some clues and shows what should be done in order to reduce risks of corrosion. / Effsys 2 P2 project
2

Galvanic Corrosion of Magnesium Coupled to Steel at High Cathode-to-Anode Area Ratios

Banjade, Dila Ram 01 December 2015 (has links) (PDF)
In this study, the impact of galvanic coupling of magnesium to steel on the corrosion rate, surface morphology, and surface film formation was investigated. In particular, the role of self-corrosion was quantified as previous studies showed discrepancies between model predictions and experimental results that were likely due to significant self-corrosion. This experimental study examined the corrosion of Mg coupled to steel in 5 wt% NaCl at cathode-to-anode area ratios that ranged from 5 to 27. Results showed that self-corrosion was significant and accounted for, on average, one-third of total corrosion. Moreover, self-corrosion varied with time and cathode size, and was accelerated by the high dissolution rate. Film formation was observed on the magnesium surface that inhibited the corrosion rates. This film contained approximately 30% of the Mg lost to corrosion. The morphology of the coupled Mg showed the rapid formation of pits with considerable depth, and was quite distinct from previously studied filiform and disk corrosion for uncoupled Mg. This study demonstrates the important role of self-corrosion during galvanic corrosion of Mg and the need to account for such corrosion when predicting corrosion rates. This study also provides important insight into the processes that control Mg corrosion under several conditions.

Page generated in 0.061 seconds