• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Galvanic Corrosion of Magnesium Coupled to Steel at High Cathode-to-Anode Area Ratios

Banjade, Dila Ram 01 December 2015 (has links) (PDF)
In this study, the impact of galvanic coupling of magnesium to steel on the corrosion rate, surface morphology, and surface film formation was investigated. In particular, the role of self-corrosion was quantified as previous studies showed discrepancies between model predictions and experimental results that were likely due to significant self-corrosion. This experimental study examined the corrosion of Mg coupled to steel in 5 wt% NaCl at cathode-to-anode area ratios that ranged from 5 to 27. Results showed that self-corrosion was significant and accounted for, on average, one-third of total corrosion. Moreover, self-corrosion varied with time and cathode size, and was accelerated by the high dissolution rate. Film formation was observed on the magnesium surface that inhibited the corrosion rates. This film contained approximately 30% of the Mg lost to corrosion. The morphology of the coupled Mg showed the rapid formation of pits with considerable depth, and was quite distinct from previously studied filiform and disk corrosion for uncoupled Mg. This study demonstrates the important role of self-corrosion during galvanic corrosion of Mg and the need to account for such corrosion when predicting corrosion rates. This study also provides important insight into the processes that control Mg corrosion under several conditions.
2

An Assessment of Novel Biodegradable Magnesium Alloys for Endovascular Biomaterial Applications

Persaud-Sharma, Dharam 10 June 2013 (has links)
Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.

Page generated in 0.0681 seconds